【題目】如圖,在直角坐標(biāo)系中,O(0,0),A(7,0),B(5,2),C(0,2)一條動(dòng)直線l分別與BC、OA交于 點(diǎn)E、F,且將四邊形OABC分為面積相等的兩部分,則點(diǎn)C到動(dòng)直線l的距離的最大值為____,

【答案】

【解析】

設(shè)M、N分別是OCEF的中點(diǎn),若直線l將梯形OABC分為面積相等的兩部分,則根據(jù)梯形的面積公式就可以求出CE+OF=6,由此可以得到MN=3,并且N是一個(gè)定點(diǎn),若要Cl的距離最大,則lCN,此時(shí)點(diǎn)C到動(dòng)直線l的距離的最大值就是CN的長.

設(shè)M、N分別是OC,EF的中點(diǎn).

O(0,0),A(7,0),B(5,2),C(0,2),

∴OA=7,OC=2,BC=5,

S梯形ABCD=.

若直線l將梯形ABCD分為面積相等的兩部分,則S梯形OCEF=S梯形ABCD=6,

,

CE+OF=6,

MN=3,

N是一個(gè)定點(diǎn)

若要Cl的距離最大,則lCN,

此時(shí)點(diǎn)A到動(dòng)直線l的距離的最大值就是CN的長.

Rt△CMN中,CM=1,MN=3

AN=.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),點(diǎn)D是弧BC的中點(diǎn),DE⊥AC于點(diǎn)E,DE⊥AB于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)若OF=2,求AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料.

我們知道,1+2+3+…+n=,那么12+22+32+…+n2結(jié)果等于多少呢?

在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個(gè)圓圈中數(shù)的和為2+2,即22,…;第nn個(gè)圓圈中數(shù)的和為n+n+n+…+n,即n2.這樣,該三角形數(shù)陣中共有個(gè)圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2

(規(guī)律探究)

將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個(gè)圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中數(shù)的和均為   ,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計(jì)算:的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)互異實(shí)根.
其中正確結(jié)論的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分6分)某公司調(diào)查某中學(xué)學(xué)生對(duì)其環(huán)保產(chǎn)品的了解情況,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

(1)本次問卷共隨機(jī)調(diào)查了 名學(xué)生,扇形統(tǒng)計(jì)圖中m= .

(2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,蘇寧商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購物.

(1)顧客購買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購物合算?

(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺(tái)冰箱買下,如果商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l的解析式為y=﹣x+4,它與x軸和y軸分別相交于A,B兩點(diǎn).平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng).它與x軸和y軸分別相交于C,D兩點(diǎn),運(yùn)動(dòng)時(shí)間為t秒(0≤t≤4),以CD為斜邊作等腰直角三角形CDE(E,O兩點(diǎn)分別在CD兩側(cè)).若△CDE和△OAB的重合部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=36°,DE是線段AC的垂直平分線,若BE=a,AE=b,則用含a、b的代數(shù)式表示△ABC的周長為

查看答案和解析>>

同步練習(xí)冊(cè)答案