【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與y軸交于點(diǎn)A(0,8),與x軸交于B、C兩點(diǎn),其中點(diǎn)C的坐標(biāo)為(4,0).點(diǎn)P(m,n)為該二次函數(shù)在第二象限內(nèi)圖象上的動(dòng)點(diǎn),點(diǎn)D的坐標(biāo)為(0,4),連接BD.
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)連接OP,過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,當(dāng)以O、P、Q為頂點(diǎn)的三角形與△OBD相似時(shí),求m的值;
(3)連接BP,以BD、BP為鄰邊作BDEP,直線PE交x軸于點(diǎn)T.當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),求點(diǎn)E的坐標(biāo).
【答案】(1) ,(﹣8,0);(2)﹣4或﹣1﹣ ;(3)(1,).
【解析】
(1)直接將A,C兩點(diǎn)代入即可求
(2)可設(shè)P(m,-m2-m+8),由∠OQP=∠BOD=90°,則分兩種情況:△POQ∽△OBD和△POQ∽△OBD分別求出PQ與OQ的關(guān)系即可
(3)作平行四邊形,實(shí)質(zhì)是將B、P向右平移8個(gè)單位,再向上平移4個(gè)單位即可得到點(diǎn)E和點(diǎn)D,點(diǎn)E在二次函數(shù)上,代入即可求m的值,從而求得點(diǎn)E的坐標(biāo).
(1)把A(0,8),C(4,0)代入y=﹣x2+bx+c得
,解得
∴該二次函數(shù)的表達(dá)為y=﹣x2﹣x+8
當(dāng)y=0時(shí),﹣x2﹣x+8=0,解得x1=﹣8,x2=4
∴點(diǎn)B的坐標(biāo)為(﹣8,0)
(2)設(shè)P(m,﹣m2﹣m+8),由∠OQP=∠BOD=90°,分兩種情況:
當(dāng)△POQ∽△OBD時(shí),
∴PQ=2OQ
即﹣m2﹣m+8=2×(﹣m),解得m=﹣4,或m=8(舍去)
當(dāng)△POQ∽△OBD時(shí),
∴OQ=2PQ
即﹣m=2×(﹣m2﹣m+8),解m=﹣1﹣ 或m=﹣1+(舍去)
綜上所述,m的值為﹣4或﹣1﹣
(3)∵四邊形BDEP為平行四邊形,
∴PE∥BD,PE=BD
∵點(diǎn)B向右平移8個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)D
∴點(diǎn)P向右平移8個(gè)單位,再向上平衡4個(gè)單位得到點(diǎn)E
∵點(diǎn)P(m,﹣m2﹣m+8),
∴點(diǎn)E(m+8,﹣m2﹣m+12),
∵點(diǎn)E落在二次函數(shù)的圖象上
∴﹣(m+8)2﹣(m+8)+8=﹣m2﹣m+12
解得,m=﹣7
∴點(diǎn)E的坐標(biāo)為(1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類(lèi)比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解
我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系.如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系.如圖1,經(jīng)過(guò)平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN交x軸和y軸于M、N,點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo).
如圖2,ω=30°,直角三角形的頂點(diǎn)A在坐標(biāo)原點(diǎn)O,點(diǎn)B、C分別在x軸和y軸上,AB=,則點(diǎn)B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為B ,C .
(2)嘗試應(yīng)用
如圖3,ω=45°,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為1的正方形OABC一邊OA在x軸上,設(shè)點(diǎn)G(x,y)在經(jīng)過(guò)A、C兩點(diǎn)的直線上,求y與x之間滿足的關(guān)系式.
(3)深入探究
如圖4,ω=60°,O為坐標(biāo)原點(diǎn),M(2,2),圓M的半徑為.有一個(gè)內(nèi)角為60°的菱形,菱形的一邊在x軸上,另有兩邊所在直線恰好與圓M相切,求此菱形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生的安全意識(shí),在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)這次調(diào)查一共抽取了 名學(xué)生,將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,“較強(qiáng)”層次所占圓心角的大小為 °;
(3)若該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)全校需要強(qiáng)化安全教育的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示.下列說(shuō)法錯(cuò)誤的是
A. abc<0B. a﹣b+c<0C. 3a+c<0D. 當(dāng)﹣1<x<3時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D都在⊙O上,AC,BD相交于點(diǎn)E,則∠ABD=( )
A. ∠ACD B. ∠ADB C. ∠AED D. ∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng):同時(shí)點(diǎn)Q沿邊AB,BC從點(diǎn)A開(kāi)始向點(diǎn)C以acm/s的速度移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P,Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)x秒時(shí),△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣4x+21,則a的值為( 。
A. 1.5B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】假期里,小華和小亮到某影城看電影,影城同時(shí)在四個(gè)放映室(1、2、3、4室)播放四部不同的電影,他們各自在這四個(gè)放映室任選一個(gè),每個(gè)放映室被選中的可能性都相同.
(1)小明選擇“1室”的概率為 (直接填空)
(2)用樹(shù)狀圖或列表的方法求小華和小亮選擇去同一間放映室看電影的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com