【題目】春節(jié)即將來(lái)臨,根據(jù)習(xí)俗好多家庭都會(huì)在門(mén)口掛紅燈籠和貼對(duì)聯(lián).某商店看準(zhǔn)了商機(jī),準(zhǔn)備購(gòu)進(jìn)批紅燈籠和對(duì)聯(lián)進(jìn)行銷(xiāo)售,已知紅燈籠的進(jìn)價(jià)是對(duì)聯(lián)進(jìn)價(jià)的2.25倍,用720元購(gòu)進(jìn)對(duì)聯(lián)的數(shù)量比用540元購(gòu)進(jìn)紅燈籠的數(shù)量多60件
(1)對(duì)聯(lián)和紅燈籠的進(jìn)價(jià)分別為多少?
(2)由于銷(xiāo)售火爆,第一批售完后,該商店以相同的進(jìn)價(jià)再購(gòu)進(jìn)300幅對(duì)聯(lián)和200個(gè)紅燈籠.已知對(duì)聯(lián)的銷(xiāo)售價(jià)格為12元一幅,紅燈籠的銷(xiāo)售價(jià)格為24元一個(gè).銷(xiāo)售一段時(shí)間后發(fā)現(xiàn)對(duì)聯(lián)售出了總數(shù)的,紅燈籠售出了總數(shù)的.為了清倉(cāng),該店老板決定對(duì)剩下的紅燈籠和對(duì)聯(lián)以相同的折扣數(shù)打折銷(xiāo)售,并很快全部售出,問(wèn)商店最低打幾折,才能使總的利潤(rùn)率不低于20%?
【答案】(1)對(duì)聯(lián)的進(jìn)價(jià)為8元/件,紅燈籠的進(jìn)價(jià)為18元/件;(2)商店最低打5折,才能使總的利潤(rùn)率不低于20%.
【解析】
(1)設(shè)對(duì)聯(lián)的進(jìn)價(jià)為x元,則紅燈籠的進(jìn)價(jià)為2.25x元,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用720元購(gòu)進(jìn)對(duì)聯(lián)的數(shù)量比用540元購(gòu)進(jìn)紅燈籠的數(shù)量多60件,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;
(2)設(shè)商店對(duì)剩下的商品打y折銷(xiāo)售,根據(jù)利潤(rùn)=銷(xiāo)售總額﹣進(jìn)貨成本結(jié)合總的利潤(rùn)率不低于20%,即可得出關(guān)于y的一元一次不等式,解之即可得出結(jié)論.
解:(1)設(shè)對(duì)聯(lián)的進(jìn)價(jià)為x元,則紅燈籠的進(jìn)價(jià)為2.25x元,
依題意,得:,
解得:x=8,
經(jīng)檢驗(yàn),x=8是原方程的解,且符合題意,
∴2.25x=18,
答:對(duì)聯(lián)的進(jìn)價(jià)為8元/件,紅燈籠的進(jìn)價(jià)為18元/件;
(2)設(shè)商店對(duì)剩下的商品打y折銷(xiāo)售,
依題意得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,
整理得:240y≥1200,
解得:y≥5,
答:商店最低打5折,才能使總的利潤(rùn)率不低于20%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=50°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點(diǎn)F,若∠ABD:∠ACF=3:5,則∠BEC的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,∠ADC=120°,ADAB,E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)A作AG∥BD,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DE=BE;
(2)請(qǐng)判斷四邊形AGBD是什么特殊的四邊形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長(zhǎng)為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,∠AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b的圖像與x軸和y軸的正半軸分別交于A,B兩點(diǎn).已知OA+OB=6(O為坐標(biāo)原點(diǎn)),且=4,則這個(gè)一次函數(shù)的解析式為 ( 。
A.y=-x+2B.y=-2x+4
C.y=x+2D.y=-x+2或y=-2x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查過(guò)程如下,請(qǐng)補(bǔ)充完整,
收集數(shù)據(jù):從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試測(cè)試成績(jī)(百分制)如下:
甲班:65,75,75,80,60,50,75,90,85,65
乙班:90,55,80,70,55,70,95,80,65,70
(1)整理描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī)x人數(shù)班級(jí) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=________;n=________.
(2)分析數(shù)據(jù):
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲班 | 75 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=________,y=________.
②若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有________人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com