【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務.
斐波那契(約1170﹣1250)是意大利數學家,他研究了一列數,這列數非常奇妙,被稱為斐波那契數列(按照一定順序排列著的一列數稱為數列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數恰是斐波那契數列中的數.斐波那契數列還有很多有趣的性質,在實際生活中也有廣泛的應用.斐波那契數列中的第n個數可以用表示(其中,n≥1).這是用無理數表示有理數的一個范例.
任務:請根據以上材料,通過計算求出斐波那契數列中的第1個數和第2個數.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數y=kx﹣2的圖象經過點A、C,并與y軸交于點E,反比例函數y= 的圖象經過點A.
(1)點E的坐標是;
(2)求反比例函數的解析式;
(3)求當一次函數的值小于反比例函數的值時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某兒童游樂園門票價格規(guī)定如下表:
購票張數 | 1~50張 | 51~100張 | 100張以上 |
每張票的價格 | 13元 | 11元 | 9元 |
某校七年級(1)、(2)兩個班共102人今年6.1兒童節(jié)去游該游樂園,其中(1)班人數較少,不足50人。經估算,如果兩個班都以班為單位購票,則一共應付1218元。問:
(1)兩個班各有多少學生?
(2)如果兩班聯(lián)合起來,作為一個團體購票,可以節(jié)省多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】畫圖計算:
(1)已知△ABC,請用尺規(guī)在圖1中△ABC內確定一個點P,使得點P到AB和BC的距離相等,且滿足P到點B和點C的距離相等(不寫作法,保留作圖痕跡).
(2)如圖2,如果點P是(1)中求作的點,點E、F分別在邊AB、BC上,且PE=PF.
①若∠ABC=60°,求∠EPF的度數;
②若BE=2,BF=8,EP=5,求BP的長.
(3)如圖3,如果點P是△ABC內一點,且點P到點B的距離是7,若∠ABC=45°,請分別在AB、BC上求作兩個點M、N,使得△PMN的周長最小(不寫作法,保留作圖痕跡),則△PMN的最小值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數y2=的圖象分別交于C、D兩點,點D(2,﹣3),點B是線段AD的中點.
(1)求一次函數y1=k1x+b與反比例函數y2=的解析式;
(2)求△COD的面積;
(3)直接寫出 k1x+b≥0 時自變量x的取值范圍.
(4)動點P(0,m)在y軸上運動,當 |PCPD| 的值最大時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一點,EC⊥BC,EC=BD,DF=FE.
求證:(1)△ABD≌△ACE;
(2)AF⊥DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,由下列條件可判定哪兩條直線平行,并說明根據.
(1)∠1=∠2,________________________.
(2)∠A=∠3,________________________.
(3)∠ABC+∠C=180°,________________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com