【題目】某校體育組為了解全校學生最喜歡的一項球類項目,隨機抽取了部分學生進行調查,下面是根據(jù)調查結果繪制的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖回答下列問題:

1)請補全條形統(tǒng)計圖(圖2);

2)在扇形統(tǒng)計圖中,籃球部分所對應的圓心角是____________度?

3)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

【答案】1)見解析;(2144;(3

【解析】

1)先利用喜歡足球的人數(shù)和它所占的百分比計算出調查的總人數(shù),再計算出喜歡乒乓球的人數(shù),然后補全條形統(tǒng)計圖;
2)用360°乘以喜歡籃球人數(shù)所占的百分比即可;
3)畫樹狀圖展示所有12種等可能的結果數(shù),再找出抽取的兩人恰好是甲和乙的結果數(shù),然后根據(jù)概率公式求解.

1)調查的總人數(shù)為8÷16%=50(人),
喜歡乒乓球的人數(shù)為50-8-20-6-2=14(人),

補全條形統(tǒng)計圖如下:

2籃球部分所對應的圓心角=360×40%=144°;
3)畫樹狀圖為:

共有12種等可能的結果數(shù),其中抽取的兩人恰好是甲和乙的結果數(shù)為2,
所以抽取的兩人恰好是甲和乙的概率:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在南北方向的海岸線上,有兩艘巡邏船,現(xiàn)均收到故障船的求救信號.已知兩船相距海里,船在船的北偏東60°方向上,船在船的東南方向上, 上有一觀測點,測得船正好在觀測點的南偏東75°方向上.

(1)分別求出,間的距離; (本問如果有根號,結果請保留根號) (此提示可以幫助你解題:,∴)

(2)已知距觀測點100海里范圍內有暗礁,若巡邏船沿直線去營救船,去營救的途中有無觸礁的危險?(參考數(shù)據(jù): )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是線段AB上一點,AC5cm,點P從點A出發(fā)沿AB3cm/s的速度向點B運動,點Q從點C出發(fā)沿CB1cm/s的速度向點B運動,兩點同時出發(fā),結果點P比點Q先到3s

1)求AB的長;

2)設點P,Q出發(fā)的時間為ts,求點P沒有超過點Q時,t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價;

(2)該款外套9月份投放市場的批發(fā)價為150/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.

①設10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)

②進入11月份以后,銷售情況出現(xiàn)好轉,廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎上實施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC內接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC3ACD

1)如圖1,求證:ABAC;

2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點AAGCD,垂足為點G,求證:CF+DGCG;

3)如圖3,在(2)的條件下,點HAC上一點,分別連接DH,OHOHDH,過點CCPAC,交⊙O于點P,OHCP1 CF12,連接PF,求PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x1,點B坐標為(﹣1,0),則下面的四個結論,其中正確的個數(shù)為( 。

2a+b04a2b+c0ac0④當y0時,﹣1x4

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAP是等腰直角三角形,∠OAP90°,點A在第四象限,點P坐標為(8,0),拋物線yax2+bx+c經(jīng)過原點OA、P兩點.

1)求拋物線的函數(shù)關系式.

2)點By軸正半軸上一點,連接AB,過點BAB的垂線交拋物線于CD兩點,且BCAB,求點B坐標;

3)在(2)的條件下,點M是線段BC上一點,過點Mx軸的垂線交拋物線于點N,求△CBN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.

(1)求拋物線的函數(shù)表達式.

(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點A1,4)和點Bn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)當一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案