【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0),則下面的四個結(jié)論,其中正確的個數(shù)為( 。
①2a+b=0②4a﹣2b+c<0③ac>0④當(dāng)y>0時,﹣1<x<4
A.1個B.2個C.3個D.4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護(hù)國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達(dá)處,此時測得燈塔在北偏東方向上.
(1)求的度數(shù);
(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)(x>0)的圖像經(jīng)過點(diǎn)D,則值為( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)。點(diǎn)為線段上任意一點(diǎn).對于該平面內(nèi)任意的點(diǎn),若滿足小于等于則稱點(diǎn)為線段的“限距點(diǎn)”.
(1)在平面直角坐標(biāo)系中,若點(diǎn).
①在的點(diǎn)中,是線段的“限距點(diǎn)”的是 ;
②點(diǎn)P是直線上一點(diǎn),若點(diǎn)P是線段AB的“限距點(diǎn)”,請求出點(diǎn)P橫坐標(biāo)的取值范圍.
(2)在平面直角坐標(biāo)系中,若點(diǎn).若直線上存在線段AB的“限距點(diǎn)”,請直接寫出的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,∠ACB=90°,,延長邊BA至點(diǎn)D,使AD=AC,聯(lián)結(jié)CD.
(1)求∠D的正切值;
(2)取邊AC的中點(diǎn)E,聯(lián)結(jié)BE并延長交邊CD于點(diǎn)F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),交軸于點(diǎn).
(1)求拋物線的解析式.
(2)點(diǎn)是線段上一動點(diǎn),過點(diǎn)作垂直于軸于點(diǎn),交拋物線于點(diǎn),求線段的長度最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,網(wǎng)紅北京迎來了無數(shù)中外游客.除了游故宮、登長城、吃烤鴨以外,稻香村的傳統(tǒng)糕點(diǎn)成為了炙手可熱的伴手禮.根據(jù)消費(fèi)者的喜好,現(xiàn)推出A、B兩種伴手禮禮盒,A禮盒裝有2個福字餅,2個祿字餅:B禮盒裝有1個福字餅,2個祿字餅,3個壽字餅,A、B兩種禮盒每盒成本價分別為盒中福祿壽三種糕點(diǎn)的成本價之和.已知A種禮盒每盒的售價為96元,利潤率為20%,每個祿字餅的成本價是壽字餅的成本價的3倍.國慶期間,由于客流量大,一天就賣出A、B兩種禮盒共計78盒,工作人員在核算當(dāng)日賣出禮盒總成本的時候把福字餅和祿字餅的成本看反了,后面發(fā)現(xiàn)如果不看反,那么當(dāng)日賣出禮盒的實(shí)際總成本比核算時的總成本少500元,則當(dāng)日賣出禮盒的實(shí)際總成本為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)、,點(diǎn)是軸正半軸上的一點(diǎn),當(dāng)時,則點(diǎn)的縱坐標(biāo)是( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上.AE與過點(diǎn)C的切線垂直,垂足為D,AD交⊙O于點(diǎn)E,過B作BF∥AE交⊙O于點(diǎn)F,連接CF.
(1)求證:∠B=2∠F;
(2)已知AE=8,DE=2,過B作BF∥AE交⊙O于F,連接CF,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com