【題目】如圖,直線與拋物線交于點A,B,點A軸上,點B軸上.

1)求該拋物線的解析式.

2)點P是直線AB上方的拋物線上的一動點,若SAOBSPAB83,求此時點P的坐標(biāo).

3)點E是拋物線對稱軸上的動點,點F是拋物線上的點,判斷有幾個位置能夠使得點EF,BO為頂點的四邊形是平行四邊形,直接寫出相應(yīng)的點F的坐標(biāo).

【答案】1;(2;(3F(5,-),(3,-),(3,)

【解析】

1)先根據(jù)一次函數(shù)求出點A、B的坐標(biāo),再利用待定系數(shù)法求解即可;

2)先求出的面積,從而可得的面積,設(shè)點P的坐標(biāo)為,如圖1(見解析),從而可得點C的坐標(biāo),再根據(jù)三角形的面積公式即可;

3)分OB為平行四邊形的一條邊和OB為平行四邊形的一條對角線兩種情況,然后根據(jù)平行四邊形的性質(zhì)分別求解即可.

1)對于直線

當(dāng)時,,則點B的坐標(biāo)為

當(dāng)時,則點A的坐標(biāo)為

將點,代入拋物線的解析式得:

解得

則拋物線的解析式為

2

如圖1,過點P軸,交AB于點C

設(shè)點P的坐標(biāo)為,則,點C的坐標(biāo)為

解得

當(dāng)時,,則點P的坐標(biāo)為

當(dāng)時,,則點P的坐標(biāo)為

綜上,此時點P的坐標(biāo)為;

3)拋物線的對稱軸為

根據(jù)平行四邊形的定義,分以下兩種情況:

①當(dāng)OB為平行四邊形的一條邊時

此時,有以下兩種情況,如圖2所示:

則點的橫坐標(biāo)為,將其代入拋物線的解析式得:

即點的坐標(biāo)為

的橫坐標(biāo)為,將其代入拋物線的解析式得:

即點的坐標(biāo)為

②當(dāng)OB為平行四邊形的一條對角線時,如圖3所示:

為平行四邊形

過點分別作x軸的平行線,分別交y軸和y軸的平行線與點M、N

,即

則點的橫坐標(biāo)為,將其代入拋物線的解析式得:

即點的坐標(biāo)為

綜上,點F的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在某條公路上有A,BC三個車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,又以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖2所示.

(1)當(dāng)汽車在A,B兩站之間勻速行駛時,求yx之間的函數(shù)關(guān)系式及自變量的取值范圍;

(2)當(dāng)汽車的行駛路程為360千米時,求此時的行駛時間x的值;

(3)若汽車在某一段路程內(nèi)行駛了90千米用時50分鐘,求行駛完這段路程時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDHAC于點H,連接DE交線段OA于點F

1)求證:DH是圓O的切線;

2)若,求證AEH的中點;

3)若EAEF2,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,E,F分別為BCCD的中點,連接AE,BF交于點G,將BCF沿BF對折,得到BPF,延長FPBA延長線于點Q,下列結(jié)論正確都有( 。﹤.

QBQF;②AEBF;③;④;④S四邊形ECFG2SBGE

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場,順風(fēng)車行經(jīng)營的型車去年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的型車數(shù)量相同,則今年6月份型車銷售總額將比去年6月份銷售總額增加

兩種型號車的進(jìn)貨和銷售價格表:

型車

型車

進(jìn)貨價格(元輛)

1100

1400

銷售價格(元輛)

今年的銷售價格

2400

1)求今年6月份型車每輛銷售價多少元;

2)該車行計劃7月份新進(jìn)一批型車和型車共50輛,且型車的進(jìn)貨數(shù)量不超過型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】放風(fēng)箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹梢上,風(fēng)箏固定在了D處,此時風(fēng)箏線AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達(dá)了離A處10米的B處,此時風(fēng)箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風(fēng)箏線的長度是多少米?(風(fēng)箏線AD,BD均為線段,≈1.414,≈1.732,最后結(jié)果精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若干個半徑為1的單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點P從原點O出發(fā),向右沿這條曲線做上下起伏運動(如圖),點P在直線上運動的速度為每1個單位長度.點P在弧線上運動的速度為每秒個單位長度,則2019秒時,點P的坐標(biāo)是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎侵襲全國,全國人民團(tuán)齊心協(xié)力共抗疫情。小明同學(xué)一直關(guān)注疫情的變化,期待疫情結(jié)束早日復(fù)課,他主要關(guān)注近一個月新增確診病例和現(xiàn)有病例的情況,如圖 1、圖 2 所示,反映的是 2020 2 22 日至 3 23 日的新增確診病例和現(xiàn)有病例的情況.

數(shù)據(jù)來源:疫情實時大數(shù)據(jù)報告

對近一個月內(nèi)數(shù)據(jù),下面有四個推斷:

①全國新增境外輸入病例呈上升趨勢;

②全國一天內(nèi)新增確診人數(shù)最多約 650 人;

③全國新增確診人數(shù)增加,現(xiàn)有確診病例人數(shù)也增加;

④全國一日新增確診人數(shù)的中位數(shù)約為 200 所有合理推斷的序號是(

A.①②B.①②③C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春天的某個周末,陽光明媚,適合戶外運動.下午,住在同一小區(qū)的小懿、小靜兩人不約而同的都準(zhǔn)備從小區(qū)出發(fā),沿相同的路線步行去同一個公園賞花!小懿出發(fā)5分鐘后小靜才出發(fā),同時小懿發(fā)現(xiàn)當(dāng)天的光線很適合攝影,所以決定按原速回家拿相機(jī),小懿拿了相機(jī)后,擔(dān)心錯過最佳拍照時間,所以速度提高了20%,結(jié)果還是比小靜晚2分鐘到公園.小懿取相機(jī)的時間忽略不計,在整個過程中,小靜保持勻速運動,小懿提速前后也分別保持勻速運動.如圖所示是小懿、小靜之間的距離y(米)與小懿離開小區(qū)的時間x(分鐘)之間的函數(shù)圖象,則小區(qū)到公園的距離為_____米.

查看答案和解析>>

同步練習(xí)冊答案