我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額 |
優(yōu)惠措施 |
不超過400元 |
售價打九折 |
超過400元 |
售價打八折 |
解:(1)設甲商品購進x件,則乙商品購進(100﹣x)件,由題意,得
y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,
∴y與x之間的函數(shù)關系式為:y=﹣5x+1000。
(2)由題意,得15x+35(100﹣x)≤3000,
解得x≥25。
∵y=﹣5x+1000中k=﹣5<0,∴y隨x的增大而減小。
∴當x取最小值25時,y最大值,此時y=﹣5×25+1000=875(元)。
∴至少要購進25件甲種商品;若售完這些商品,商家可獲得的最大利潤是875元。
(3)設小王到該商場購買甲種商品m件,購買乙種商品n件.
①當打折前一次性購物總金額不超過400時,購物總金額為324÷0.9=360(元),
則20m+45n=360,m=18﹣n>0,∴0<n<8.
∵n是4的倍數(shù),∴n=4,m=9。
此時的利潤為:324﹣(15×9+35×4)=49(元)。
②當打折前一次性購物總金額超過400時,購物總金額為324÷0.8=405(元),
則20m+45n=405,m=>0,∴0<n<9。
∵m、n均是正整數(shù),∴m=9,n=5或m=18,n=1。
當m=9,n=5的利潤為:324﹣(9×15+5×35)=14(元);
當m=18,n=1的利潤為:324﹣(18×15+1×35)=19(元)。
綜上所述,商家可獲得的最小利潤是14元,最大利潤各是49元。
【解析】
試題分析:(1)根據(jù)利潤=甲種商品的利潤+乙種商品的利潤就可以得出結(jié)論。
(2)根據(jù)“商家計劃最多投入3000元用于購進此兩種商品共100件”列出不等式,解不等式求出其解,再根據(jù)一次函數(shù)的性質(zhì),求出商家可獲得的最大利潤。
(3)設小王到該商場購買甲種商品m件,購買乙種商品n件.分兩種情況討論:①打折前一次性購物總金額不超過400;②打折前一次性購物總金額超過400。
科目:初中數(shù)學 來源: 題型:
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價打九折 |
超過400元 | 售價打八折 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價打九折 |
超過400元 | 售價打八折 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013年廣西梧州市中考數(shù)學試卷(解析版) 題型:解答題
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價打九折 |
超過400元 | 售價打八折 |
查看答案和解析>>
科目:初中數(shù)學 來源:梧州 題型:解答題
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價打九折 |
超過400元 | 售價打八折 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com