【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(60).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D

1)求拋物線的函數(shù)解析式;

2)點(diǎn)P為線段BC上一個動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個動點(diǎn),AQCP,連接PQ,設(shè)CPm,CPQ的面積為S

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

【答案】1y=﹣x2+x+8;(2)①S=﹣m2+3m;②滿足條件的點(diǎn)F共有四個,坐標(biāo)分別為F1,8),F2,4),F36+),F4,6).

【解析】

1)將AC兩點(diǎn)坐標(biāo)代入拋物線yx2bxc,即可求得拋物線的解析式;

2)①先用m表示出QE的長度,進(jìn)而求出三角形的面積S關(guān)于m的函數(shù);

②先求出m=5S取最大值,再根據(jù)DFQ為直角三角形分情況求出F的坐標(biāo).

1)將A、C兩點(diǎn)坐標(biāo)代入拋物線,得

,

解得:

拋物線的解析式為y=﹣x2+x+8;

2①∵OA8,OC6,

AC10,

過點(diǎn)QQEBCE點(diǎn),則sin∠ACB,

QE10m),

SCPQEm×10m)=﹣m2+3m;

②∵S=﹣m2+3m=﹣m52+,

當(dāng)m5時,S取最大值;

在拋物線對稱軸l上存在點(diǎn)F,使FDQ為直角三角形,

拋物線的解析式為y=﹣x2+x+8的對稱軸為x,

D的坐標(biāo)為(3,8),

∵CP=AQ=5,

CQ=5

Q點(diǎn)作QGx軸,

sin∠ACO==

QG=4

CG=

OG=CO-CG=3

Q34),

設(shè)F,n),

當(dāng)FDQ90°時,則F在直線AB上,

F1,8),

當(dāng)FQD90°時,則F的縱坐標(biāo)與Q點(diǎn)縱坐標(biāo)相同,

F2,4),

當(dāng)DFQ90°時,設(shè)F,n),

FD2+FQ2DQ2

+8n2++n4216,

解得:n

F3,6+),F4,6),

滿足條件的點(diǎn)F共有四個,坐標(biāo)分別為F1,8),F2,4),F3,6+),F4,6).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】慈氏塔位于岳陽市城西洞庭湖邊,是湖南省保存最好的古塔建筑之一.如圖,小亮的目高CD1.7米,他站在D處測得塔頂?shù)难鼋恰?/span>ACG45°,小琴的目高EF1.5米,她站在距離塔底中心B點(diǎn)a米遠(yuǎn)的F處,測得塔頂?shù)难鼋恰?/span>AEH62.3°.(點(diǎn)D、B、F在同一水平線上,參考數(shù)據(jù):sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)

(1)求小亮與塔底中心的距離BD;(用含a的式子表示)

(2)若小亮與小琴相距52米,求慈氏塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探測氣球甲從海拔處出發(fā),與此同時,探測氣球乙從海拔處出發(fā).圖中的分別表示甲、乙兩個氣球所在位置的海拔(單位:)與上升時間(單位:)之間的關(guān)系.

1)求的函數(shù)解析式;

2)探測氣球甲從出發(fā)點(diǎn)上升到海拔處的過程中,是否存在某一時刻使得探測氣球甲、乙位于同一高度?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受“新冠”疫情影響,全國中小學(xué)延遲開學(xué),很多學(xué)校都開展起了“線上教學(xué)”,市場上對手寫板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)AB兩種型號的手寫板,若生產(chǎn)20A型號和30B型號手寫板,共需要投入36000元;若生產(chǎn)30A型號和20B型號手寫板,共需要投入34000元.

1)請問生產(chǎn)AB兩種型號手寫板,每個各需要投入多少元的成本?

2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準(zhǔn)備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設(shè)生產(chǎn)了A型號手寫板a個,求w關(guān)于a的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了手機(jī)伴我健康行主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行使用手機(jī)目的每周使用手機(jī)的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)該校共有學(xué)生2100人,估計每周使用手機(jī)時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,點(diǎn)邊上,的平分線交于點(diǎn),連接,,過點(diǎn)的延長線相交于點(diǎn)

1)求證:的切線;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、FG、H分別在矩形ABCD的邊ABBC、CD、DA(不包括端點(diǎn))上運(yùn)動,且滿足

(1)求證:;

(2)試判斷四邊形EFGH的形狀,并說明理由.

(3)請?zhí)骄克倪呅?/span>EFGH的周長一半與矩形ABCD一條對角線長的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DE分別在ABC的邊BC,AC上,連接AD,DE

1)若∠C=BADAB=5,求BD·BC的值;

2)若點(diǎn)EAC的中點(diǎn),AD=AE 求證:∠1=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B'處,點(diǎn)A落在點(diǎn)A'處.

1)求證:B'EBF;

2)若AE1,B'E2,求梯形ABFE的面積.

查看答案和解析>>

同步練習(xí)冊答案