【題目】已知點(diǎn)P(,)和直線y=kx+b,則點(diǎn)P到直線y=kx+b距離證明可用公式d= 計(jì)算.

例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.

解:因?yàn)橹本y=3x+7,其中k=3,b=7.

所以點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:d== = =

根據(jù)以上材料,解答下列問題:

(1)求點(diǎn)P(1,﹣1)到直線y=x﹣1的距離;

(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r2,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;

(3)已知直線y=﹣2x+4y=﹣2x﹣6平行,求這兩條直線之間的距離.

【答案】(1);(2)見解析;(3)2.

【解析】

(1)根據(jù)點(diǎn)P到直線y=kx+b的距離公式直接計(jì)算即可;(2)先利用點(diǎn)到直線的距離公式計(jì)算出圓心Q到直線y=x+9,然后根據(jù)切線的判定方法可判斷⊙Q與直線y=x+9相切;(3)利用兩平行線間的距離定義,在直線y=-2x+4上任意取一點(diǎn),然后計(jì)算這個(gè)點(diǎn)到直線y=-2x-6的距離即可.

(1)因?yàn)橹本y=x-1,其中k=1,b=-1,
所以點(diǎn)P(1,-1)到直線y=x-1的距離為:d=;
(2)⊙Q與直線y=x+9的位置關(guān)系為相切.
理由如下:
圓心Q(0,5)到直線y=x+9的距離為:d=,
而⊙O的半徑r2,即d=r,
所以⊙Q與直線y=x+9相切;
(3)當(dāng)x=0時(shí),y=-2x+4=4,即點(diǎn)(0,4)在直線y=-2x+4,
因?yàn)辄c(diǎn)(0,4)到直線y=-2x-6的距離為:d=
因?yàn)橹本y=-2x+4y=-2x-6平行,
所以這兩條直線之間的距離為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為等邊三角形內(nèi)一點(diǎn),且,則的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某型號(hào)新能源純電動(dòng)汽車充滿電后,蓄電池剩余電量(千瓦時(shí))關(guān)于已行駛路程(千米)的函數(shù)圖象.

1)根據(jù)函數(shù)圖象,蓄電池剩余電量為35千瓦時(shí)汽車已經(jīng)行駛的路程為____千米.當(dāng)時(shí),消耗1千瓦時(shí)的電量,汽車能行駛的路程為_____千米.

2)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式,并計(jì)算當(dāng)汽車已行駛160千米時(shí),蓄電池的剩余電量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,,,是等腰直角三角形且,把繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到,把繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點(diǎn)P2020的坐標(biāo)為(

A.(4039,-1)

B.(4039,1)

C.(2020-1)

D.(2020,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,

OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是【 】

A.(2,3) B.(2,-3) C.(3,2)或(-2,3) D.(2,3)或(2,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)査.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表(單位:cm

其中,C組男生的身高如下(單位:cm):

160 161 161 162 163 163 163 163 163 164

C組女生的身高如下(單位:cm):

160 160 161 161 161 161 162 162 163 164

根據(jù)圖表提供的信息,回答下列問題:

1)樣本中,男生中位數(shù)為_________,女生身高在E組的人數(shù)有_________人;

2)現(xiàn)有兩名身高都為160cm的男生與女生,比較這兩個(gè)同學(xué)分別在男生、女生中的身高情況,并簡(jiǎn)述理由;

3)若已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在之間的學(xué)生約有多少人?

身高情況分組表(單位:cm

組別

身高/cm

A

B

C

D

E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A=30°,以點(diǎn)B為圓心,BC的長(zhǎng)為半徑畫弧,交AB于點(diǎn)F.點(diǎn)DAC的中點(diǎn),以點(diǎn)D為圓心,DC為半徑畫弧,交AB于點(diǎn)E,若BC2,則圖中陰影部分的面積為__________(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,.點(diǎn)和點(diǎn)分別從點(diǎn)和點(diǎn)同時(shí)出發(fā)沿軸正方向運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿軸正方向運(yùn)動(dòng),以,為鄰邊構(gòu)造,已知點(diǎn),的運(yùn)動(dòng)速度均為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)時(shí)間為.過點(diǎn)的拋物線軸于另一點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),,且該二次函數(shù)的最大值不變,均為

1)①當(dāng)時(shí),求的長(zhǎng);(用含的代數(shù)式表示);②當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),試判斷點(diǎn)是否恰好落在拋物線上,并說明理由;

3)若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好落在拋物線上,請(qǐng)求出所有滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小澤和小帥兩同學(xué)分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會(huì)實(shí)踐活動(dòng).如圖折線OAB和線段CD分別表示小澤和小帥離甲地的距離y(單位:千米)與時(shí)間x(單位:小時(shí))之間函數(shù)關(guān)系的圖象.根據(jù)圖中提供的信息,解答下列問題:

1)小帥的騎車速度為 千米/小時(shí);點(diǎn)C的坐標(biāo)為 ;

2)求線段AB對(duì)應(yīng)的函數(shù)表達(dá)式;

3)當(dāng)小帥到達(dá)乙地時(shí),小澤距乙地還有多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案