【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關于x的方程kx﹣x=a﹣b的解是x=3;④當x<3時,y1<y2中.則正確的序號有________.
【答案】①③
【解析】
根據(jù)一次函數(shù)的性質(zhì)對①②進行判斷;利用一次函數(shù)與一元一次方程的關系對③進行判斷;利用函數(shù)圖象,當x<3時,一次函數(shù)y1=kx+b在直線y2=x+a的上方,則可對④進行判斷.
∵一次函數(shù)y1=kx+b經(jīng)過第一、二、三象限,
∴k<0,b>0,所以①正確;
∵直線y2=x+a的圖象與y軸的交點在x軸下方,
∴a<0,所以②錯誤;
∵一次函數(shù)y1=kx+b與y2=x+a的圖象的交點的橫坐標為3,
∴x=3時,kx+b=x+a,所以③正確;
當x<3時,y1>y2,所以④錯誤.
故答案為①③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1∥l2,點A、D在l1上,AB⊥l1,CD⊥l2,垂足分別是B、C,點E,F在l2上,AE∥DF,那么AE與DF、BE與CF相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】提出問題:
(1)如圖,我們將圖(1)所示的凹四邊形稱為“鏢形”.在“鏢形”圖中,∠AOC與∠A、∠C、∠P的數(shù)量關系為_______.
(2)如圖(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度數(shù).
由(1)結(jié)論得:∠AOC =∠PAO +∠PCO+∠P
所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P
因為∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D
所以2∠AOC=∠BAO +∠DCO+∠B +∠D
所以∠P=_______.
解決問題:
(3)如圖(3),直線AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的數(shù)量關系是_______;
(4)如圖(4),直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的數(shù)量關系是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知O為直線AB上一點,過點O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠2=3∠1.
(1)若∠1=18°,求∠COE的度數(shù);
(2)若∠COE=70°,求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點,梯形的底AD在x軸上,其中A(﹣2,0),B(﹣1,﹣3).
(1)求拋物線的解析式;
(2)點M為y軸上任意一點,當點M到A、B兩點的距離之和為最小時,求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為 的 中,弦 , 是弦 所對的優(yōu)弧上的動點,連接 , 過點 作 的垂線交射線 于點 ,當 是等腰三角形時,線段 的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,且BC=8cm,CA=6cm,則點O到邊AB的距離為( )
A. 2cm B. 3cm C. 4cm D. 5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小芳和小剛都想?yún)⒓訉W校組織的暑期實踐活動,但只有一個名額,小芳提議:將一個轉(zhuǎn)盤等分,分別將個區(qū)間標上至個號碼,隨意轉(zhuǎn)動一次轉(zhuǎn)盤,根據(jù)指針指向區(qū)間決定誰去參加活動,具體規(guī)則:若指針指向偶數(shù)區(qū)間,小剛?cè)⒓踊顒;若指針指向奇?shù)區(qū)間,小芳去參加活動.
(1)求小剛?cè)⒓踊顒拥母怕适嵌嗌伲浚?/span>2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com