作业宝如圖,已知BO=OC,AB=DC,BF∥CE,且A,B,C,D四點(diǎn)在同一直線上.求證:AF∥DE.

證明:∵BF∥CE,
∴∠FBO=∠ECO,∠BFO=∠CEO,
在△BOF和△COE中,
,
∴△BOF≌△COE(AAS)
∴BF=CE,
∵∠FBO=∠ECO,
∴∠ABF=∠DCE,
在△ABF和△DCE中,

∴△ABF≌△DCE(SAS)
∴∠FAB=∠FDC,
∴AF∥DE.
分析:首先根據(jù)BF∥CE,得∠FBO=∠ECO,∠BFO=∠CEO,結(jié)合BO=CO,證明出△BOF≌△COE,于是得到BF=CE,再次結(jié)合題干條件證明△ABF≌△DCE,得到∠FAB=∠FDC,即可證明AF∥DE.
點(diǎn)評:本題主要考查全等三角形的判定與性質(zhì)的知識點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的幾個(gè)判定定理,此題難度一般,是一道比較不錯(cuò)的習(xí)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=a(x-1)2+3
3
(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•金山區(qū)二模)如圖,已知點(diǎn)D,E分別是邊AC和AB的中點(diǎn),設(shè)
BO
=
a
,
OC
=
b
,那么
ED
=
a
+
b
2
a
+
b
2
(用
a
b
來表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=a(x-1)2+3
3
(a≠0)
經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)D平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒l個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問:當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形?直角梯形?等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒l個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng)設(shè)它們運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最。坎⑶蟪鲎钚≈担
(4)在(3)中當(dāng)t為何值時(shí),以O(shè),P,Q為頂點(diǎn)的三角形與△OAD相似?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,∠BAC、∠ABC的平分線交于O,AO交BC于D,BO交AC于E,連OC,過O作OF⊥BC于F.
(1)試判斷∠AOB與∠COF有何數(shù)量關(guān)系,并證明你的結(jié)論;
(2)若∠ACB=60°,探究OE與OD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案