【題目】如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點均在⊙O上,當(dāng)圖形L的面積最大時,求⊙O的面積.
【答案】
(1)
解:如圖3,作AH⊥BC于H,
∴∠AHB=90°.
∵△ABC是等邊三角形,
∴AB=BC=AC=3.
∵∠AHB=90°,
∴BH= BC=
在Rt△ABC中,由勾股定理,得
AH= .
∴S△ABC= =
(2)
解:如圖1,當(dāng)0<x≤1.5時,y=S△ADE.
作AG⊥DE于G,
∴∠AGD=90°,∠DAG=30°,
∴DG= x,AG= x,
∴y= = x2,
∵a= >0,開口向上,在對稱軸的右側(cè)y隨x的增大而增大,
∴x=1.5時,y最大= ,
如圖2,當(dāng)1.5<x<3時,作MG⊥DE于G,
∵AD=x,
∴BD=DM=3﹣x,
∴DG= (3﹣x),MF=MN=2x﹣3,
∴MG= (3﹣x),
∴y= ,
=﹣ ;
綜上所述,y關(guān)于x的函數(shù)解析式為:
(3)
解:如圖4,∵y=﹣ ;
∴y=﹣ (x2﹣4x)﹣ ,
y=﹣ (x﹣2)2+ ,
∵a=﹣ <0,開口向下,
∴x=2時,y最大= ,
∵ > ,
∴y最大時,x=2,
∴DE=2,BD=DM=1.作FO⊥DE于O,連接MO,ME.
∴DO=OE=1,
∴DM=DO.
∵∠MDO=60°,
∴△MDO是等邊三角形,
∴∠DMO=∠DOM=60°,MO=DO=1.
∴MO=OE,∠MOE=120°,
∴∠OME=30°,
∴∠DME=90°,
∴DE是直徑,
S⊙O=π×12=π.
【解析】(1)作AH⊥BC于H,根據(jù)勾股定理就可以求出AH,由三角形的面積公式就可以求出其值;(2)如圖1,當(dāng)0<x≤1.5時,由三角形的面積公式就可以表示出y與x之間的函數(shù)關(guān)系式,如圖2,當(dāng)1.5<x<3時,重疊部分的面積為梯形DMNE的面積,由梯形的面積公式就可以求出其關(guān)系式;(3)如圖4,根據(jù)(2)的結(jié)論可以求出y的最大值從而求出x的值,作FO⊥DE于O,連接MO,ME,求得∠DME=90°,就可以求出⊙O的直徑,由圓的面積公式就可以求出其值.
【考點精析】本題主要考查了翻折變換(折疊問題)的相關(guān)知識點,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2﹣2x+c與y軸的交點為(0,﹣3),則下列說法不正確的是( )
A.拋物線開口向上
B.拋物線的對稱軸是x=1
C.當(dāng)x=1時,y的最大值為﹣4
D.拋物線與x軸的交點為(﹣1,0),(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個全等的直角三角形重疊在一起,將其中的一個三角形沿著點B到C的方向平移到的位置,,,平移距離為6,則陰影部分面積為
A. 24 B. 40 C. 42 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)=ax+2by-1(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)=a·0+2b·1-1=2b-1.已知T(1,-1)=-2,T(-3,2)=4.
(1)求a,b的值;
(2)利用(1)的結(jié)果化簡求值:(a-b)2-(a+2b)·(a-2b)+2a(1+b).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈送一件乙種商品;
方案二:按購買金額打八折付款.
某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2(元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購買最實惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點C坐標(biāo)為_____________.(點C不與點A重合)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com