在平面直角坐標(biāo)系△ABC中,A(-1,0),B(-4,0),C.(-3,2).
(1)將△ABC繞點(diǎn)M(0,1)順時(shí)針旋轉(zhuǎn)90゜得△A1B1C1,畫(huà)圖并直接寫(xiě)出C1的坐標(biāo);
(2)作出△ABC關(guān)于N(0,-1)中心對(duì)稱(chēng)△A2B2C2并直接寫(xiě)出C2的坐標(biāo),并畫(huà)圖;
(3)觀(guān)察并直接回答B(yǎng)1C1與線(xiàn)段B2C2大小與位置關(guān)系.

解:(1)△A1B1C1如圖所示,C1(1,4);
(2)△A2B2C2如圖所示,C2(3,-4);
(3)B1C1=B2C2,B1C1⊥B2C2

分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫(xiě)出點(diǎn)C1的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于點(diǎn)N對(duì)稱(chēng)的點(diǎn)A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫(xiě)出點(diǎn)C2的坐標(biāo);
(3)根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小判斷出數(shù)量關(guān)系,再根據(jù)網(wǎng)格結(jié)構(gòu)判斷出位置關(guān)系.
點(diǎn)評(píng):本題考查了利用旋轉(zhuǎn)變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、在平面直角坐標(biāo)系中,我們稱(chēng)邊長(zhǎng)為1且頂點(diǎn)的橫縱坐標(biāo)均為整數(shù)的正方形為單位格點(diǎn)正方形.如圖,菱形ABCD的四個(gè)頂點(diǎn)坐標(biāo)分別是(-8,0),(0,4),(8,0),(0,-4),則菱形ABCD能覆蓋的單位格點(diǎn)正方形的個(gè)數(shù)是
48
個(gè);若菱形AnBnCnDn的四個(gè)頂點(diǎn)坐標(biāo)分別為(-2n,0),(0,n),(2n,0),(0,-n)(n為正整數(shù)),則菱形AnBnCnDn能覆蓋的單位格點(diǎn)正方形的個(gè)數(shù)為
4n2-4n
(用含有n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、在平面直角坐標(biāo)系中,以點(diǎn)(2,1)為圓心,1為半徑的圓,必與( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1,直線(xiàn)l:y=-x-
2
與坐標(biāo)軸分別交于A(yíng)、C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1),⊙B與x軸相切于點(diǎn)M.
(1)求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個(gè)單位長(zhǎng)度的速度沿想x軸負(fù)方向平移,同時(shí),直線(xiàn)l繞點(diǎn)A以每秒鐘旋轉(zhuǎn)30°的速度順時(shí)針勻速旋轉(zhuǎn),當(dāng)⊙B第一次與⊙O相切時(shí),請(qǐng)判斷直線(xiàn)ι與⊙B的位置關(guān)系,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知:矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,-2),則矩形的面積等于
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,斜邊AB與y軸交于點(diǎn)C.
(1)若∠A=∠AOC,求證:∠B=∠BOC;
精英家教網(wǎng)
(2)延長(zhǎng)AB交x軸于點(diǎn)E,過(guò)O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線(xiàn)交FO的延長(zhǎng)線(xiàn)于點(diǎn)P,當(dāng)△ABO繞O點(diǎn)旋轉(zhuǎn)時(shí)(斜邊AB與y軸正半軸始終相交于點(diǎn)C),在(2)的條件下,試問(wèn)∠P的度數(shù)是否發(fā)生改變?若不變,請(qǐng)求其度數(shù);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案