(2006•海淀區(qū))已知下列n(n為正整數(shù))個(gè)關(guān)于x的一元二次方程:①x2-1=0,②x2+x-2=0,③x2+2x-3=0,…(n)x2+(n-1)x-n=0.
(1)請(qǐng)解上述一元二次方程①、②、③、(n);
(2)請(qǐng)你指出這n個(gè)方程的根具有什么共同特點(diǎn),寫出一條即可.
【答案】分析:利用因式分解法分別解方程,求出結(jié)果,分析方程的解與因式之間的關(guān)系,總結(jié)出共同特點(diǎn).
解答:解:(1)①(x+1)(x-1)=0,
所以x1=-1,x2=1
②(x+2)(x-1)=0,
所以x1=-2,x2=1;
③(x+3)(x-1)=0,
所以x1=-3,x2=1;
(n)(x+n)(x-1)=0,
所以x1=-n,x2=1

(2)共同特點(diǎn)是:
都有一個(gè)根為1;都有一個(gè)根為負(fù)整數(shù);
兩個(gè)根都是整數(shù)根等等.
點(diǎn)評(píng):利用因式分解法分別解方程,求出結(jié)果,分析方程的解與因式之間的關(guān)系,總結(jié)出共同特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(diǎn)(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市十三中中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點(diǎn)的坐標(biāo)為(0,4),D點(diǎn)的坐標(biāo)為(7,0),試驗(yàn)證點(diǎn)D是否在經(jīng)過點(diǎn)A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(diǎn)(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案