當(dāng)x2-2=0時,求代數(shù)式的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,點A是拋物線y=x2在第二象限上的點,連接OA,過點O作OB⊥OA,交拋物線于點B,以O(shè)A、OB為邊構(gòu)造矩形AOBC.

(1)如圖1,當(dāng)點A的橫坐標(biāo)為 -1  時,矩形AOBC是正方形;

(2)如圖2,當(dāng)點A的橫坐標(biāo)為 時,

①求點B的坐標(biāo);

②將拋物線y=x2作關(guān)于x軸的軸對稱變換得到拋物線y=-x2,試判斷拋物線y=-x2經(jīng)過平移交換后,能否經(jīng)過A,B,C三點?如果可以,說出變換的過程;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖北黃石九年級5月聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
【小題1】求這條拋物線的解析式;
【小題2】點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
【小題3】探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形,若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(帶解析) 題型:解答題

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=
。
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:解答題

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=

。

參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.

(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;

(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.

 

查看答案和解析>>

同步練習(xí)冊答案