【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?

事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.

2)已知:,其中是整數(shù),且,求的值.

【答案】16;(212

【解析】

1)先求出的取值范圍即可求出ab的值,然后代入求值即可;

2)先求出的取值范圍,即可求出10+的整數(shù)部分和小數(shù)部分,從而求出xy,從而求出結論.

解:(1∵ 34,

∴ a=3,b=-3

=+-3-

=6

2 1<<2

又∵10+=x+y,其中x是整數(shù),且0<y<1,

x=11, y=1

xy=11(1)=12

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC108°,ADBCD,且AB+BDDC,則∠C的大小是(  )

A.20°B.24°C.30°D.36°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別為,,,把三角形ABC向右平移2個單位長度,再向下平移4個單位長度后得到三角形

1)畫出三角形ABC和平移后的圖形;

2)寫出三個頂點,的坐標;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側(cè)面進行包貼(要求包貼時沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個三棱柱包裝盒的側(cè)面全部包貼滿.

1)請在圖2中,計算裁剪的角度∠BAD;

2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,若動點P從點C開始,按的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.

出發(fā)2秒后,求的面積;

t為幾秒時,BP平分;

t為何值時,為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖要求:、過直線外一點作這條直線的垂線;、作線段的垂直平分線;

、過直線上一點作這條直線的垂線;、作角的平分線.

如圖是按上述要求排亂順序的尺規(guī)作圖:

則正確的配對是( 。

A. ﹣Ⅳ,﹣Ⅱ,﹣Ⅰ,﹣Ⅲ B. ﹣Ⅳ,﹣Ⅲ,﹣Ⅱ,﹣Ⅰ

C. ﹣Ⅱ,﹣Ⅳ,﹣Ⅲ,﹣Ⅰ D. ﹣Ⅳ,﹣Ⅰ,﹣Ⅱ,﹣Ⅲ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,試說明:∠A+∠B+∠C=180°

方法一: 過點ADEBC. 則(填空)

B=∠ ,∠C=∠

∵ ∠DAB+∠BAC+ ∠CAE=180°

∴∠A+∠B+∠C=180°

方法二: 過BC上任意一點DDEAC,DFAB分別交AB、ACE、F(補全說理過程 )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.

(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3 ,AE=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,則BEAF的數(shù)量關系是   

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么上述結論還成立嗎?請利用圖②說明理由.

查看答案和解析>>

同步練習冊答案