如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過原點(diǎn)O,交x軸于點(diǎn)A,其頂點(diǎn)B的坐標(biāo)為(3,-
3
).
(1)求該拋物線的解析式及點(diǎn)A的坐標(biāo);
(2)在拋物線上求點(diǎn)P,使S△POA=2S△AOB
分析:(1)根據(jù)函數(shù)經(jīng)過原點(diǎn),可得c=0,然后根據(jù)函數(shù)的對(duì)稱軸,及函數(shù)圖象經(jīng)過點(diǎn)(3,-
3
)可得出函數(shù)解析式,根據(jù)二次函數(shù)的對(duì)稱性可直接得出點(diǎn)A的坐標(biāo).
(2)根據(jù)題意可得點(diǎn)P到OA的距離是點(diǎn)B到OA距離的2倍,即點(diǎn)P的縱坐標(biāo)為2
3
,代入函數(shù)解析式可得出點(diǎn)P的橫坐標(biāo).
解答:解:(1)由函數(shù)圖象經(jīng)過原點(diǎn)得,函數(shù)解析式為y=ax2+bx(a≠0),
又∵函數(shù)的頂點(diǎn)坐標(biāo)為(3,-
3
),
-
b
2a
=3
9a+3b=-
3

解得:
a=
3
9
b=-
2
3
3
,
故函數(shù)解析式為:y=
3
9
x2-
2
3
3
x,
由二次函數(shù)圖象的對(duì)稱性可得點(diǎn)A的坐標(biāo)為(6,0);

(2)∵S△POA=2S△AOB,
∴點(diǎn)P到OA的距離是點(diǎn)B到OA距離的2倍,即點(diǎn)P的縱坐標(biāo)為2
3

代入函數(shù)解析式得:2
3
=
3
9
x2-
2
3
3
x,
解得:x1=3+3
3
,x2=3-3
3
,
即滿足條件的點(diǎn)P有兩個(gè),其坐標(biāo)為:P1(3+3
3
,2
3
),P2(3-3
3
,2
3
).
點(diǎn)評(píng):此題考查了二次函數(shù)的綜合題目,涉及了待定系數(shù)法求函數(shù)解析式,三角形的面積及一元二次方程的解,綜合性較強(qiáng),需要我們仔細(xì)分析,分步解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案