(第1小題滿分4分,第2小題滿分5分,本題滿分共9分)

(1)已知,從這4個數(shù)中任意選取3個數(shù)求和;

(2),試說明在右邊代數(shù)式有意義的條件下,不論

 

何值,的值不變.

 

【答案】

(1)解:其一: =1+8+2=11;………4分

其二:

其三:;

其四:

說明:任選按一種解答即可:每算對一個數(shù)得1分,最后結(jié)果正確得滿分.

(2)解:

=0 - 1 = -1…                                    ……………4分

∴在右邊代數(shù)式有意義的條件下,不論為何值,的值都是-1,即它的值不變…5分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(以下兩小題選做一題,第1小題滿分14分,第2小題滿分為10分.若兩小題都做,以第1小題計分)
選做第
 
小題.
(1)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①如圖,將紙片沿CE對折,點B落在x軸上的點D處,求點D的坐標;
②在①中,設(shè)BD與CE的交點為P,若點P,B在拋物線y=x2+bx+c上,求b,c的值;
③若將紙片沿直線l對折,點B落在坐標軸上的點F處,l與BF的交點為Q,若點Q在②的拋物線上,求l的解析式.
(2)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①求直線AC的解析式;
②若M為AC與BO的交點,點M在拋物線y=-
85
x2+kx上,求k的值;
③將紙片沿CE對折,點B落在x軸上的點D處,試判斷點D是否在②的拋物線上,并說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,第(1)小題滿分6分,第(2)小題滿分6分)如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點E是AH上一點,延長AH至點F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果=,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(第1小題滿分4分,第2小題滿分5分,本題滿分共9分)
(1)已知,從這4個數(shù)中任意選取3個數(shù)求和;
(2),試說明在右邊代數(shù)式有意義的條件下,不論
何值,的值不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆上海市普陀區(qū)4月中考模擬數(shù)學(xué)試卷 題型:解答題

(本題滿分12分,第(1)小題滿分6分,第(2)小題滿分6分)如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點E是AH上一點,延長AH至點F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果=,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•紹興)(以下兩小題選做一題,第1小題滿分14分,第2小題滿分為10分.若兩小題都做,以第1小題計分)
選做第______小題.
(1)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①如圖,將紙片沿CE對折,點B落在x軸上的點D處,求點D的坐標;
②在①中,設(shè)BD與CE的交點為P,若點P,B在拋物線y=x2+bx+c上,求b,c的值;
③若將紙片沿直線l對折,點B落在坐標軸上的點F處,l與BF的交點為Q,若點Q在②的拋物線上,求l的解析式.
(2)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
①求直線AC的解析式;
②若M為AC與BO的交點,點M在拋物線y=-x2+kx上,求k的值;
③將紙片沿CE對折,點B落在x軸上的點D處,試判斷點D是否在②的拋物線上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案