【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點(diǎn)A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是 .
【答案】
【解析】解:延長D4A和C1B交于O,
∵AB∥A2C1 ,
∴△AOB∽△D2OC2 ,
∴ = ,
∵AB=BC1=1,D C2=C1C2=2,
∴ = =
∴OC2=2OB,
∴OB=BC2=3,
∴OC2=6,
設(shè)正方形A2C2C3D3的邊長為x1 ,
同理證得:△D2OC2∽△D3OC3 ,
∴ = ,解得,x1=3,
∴正方形A2C2C3D3的邊長為3,
設(shè)正方形A3C3C4D4的邊長為x2 ,
同理證得:△D3OC3∽△D4OC4 ,
∴ = ,解得x2= ,
∴正方形A3C3C4D4的邊長為 ;
設(shè)正方形A4C4C5D5的邊長為x3 ,
同理證得:△D4OC4∽△D5OC5 ,
∴ = ,解得x= ,
∴正方形A4C4C5D5的邊長為 ;
以此類推….
正方形An﹣1Cn﹣1CnDn的邊長為 ;
∴正方形A9C9C10D10的邊長為 .
故答案為 .
延長D4A和C1B交于O,根據(jù)正方形的性質(zhì)和三角形相似的性質(zhì)即可求得各個(gè)正方形的邊長,從而得出規(guī)律,即可求得正方形A9C9C10D10的邊長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知A(3,0),且M(1,﹣ )是拋物線上另一點(diǎn).
(1)求a、b的值;
(2)連結(jié)AC,設(shè)點(diǎn)P是y軸上任一點(diǎn),若以P、A、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,求P點(diǎn)的坐標(biāo);
(3)若點(diǎn)N是x軸正半軸上且在拋物線內(nèi)的一動(dòng)點(diǎn)(不與O、A重合),過點(diǎn)N作NH∥AC交拋物線的對稱軸于H點(diǎn).設(shè)ON=t,△ONH的面積為S,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動(dòng),共開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過該菱形對角線的交點(diǎn)A,且與邊BC交于點(diǎn)F.若點(diǎn)D的坐標(biāo)為(6,8),則點(diǎn)F的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2為同一長方體房間的示意圖,圖3為該長方體的表面展開圖.
(1)蜘蛛在頂點(diǎn)A′處. ①蒼蠅在頂點(diǎn)B處時(shí),試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線.
②蒼蠅在頂點(diǎn)C處時(shí),圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過計(jì)算判斷哪條路線更近.
(2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長度的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)D.
(1)如圖1,若該拋物線經(jīng)過原點(diǎn)O,且a=﹣ .
①求點(diǎn)D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)E(1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常數(shù)).
(1)當(dāng)k取1和2時(shí)的函數(shù)y1和y2的圖象如圖所示,請你在同一直角坐標(biāo)系中畫出當(dāng)k取0時(shí)的函數(shù)的圖象;
(2)根據(jù)圖象,寫出你發(fā)現(xiàn)的一條結(jié)論;
(3)將函數(shù)y2的圖象向左平移4個(gè)單位,再向下平移2個(gè)單位,得到的函數(shù)y3的圖象,求函數(shù)y3的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點(diǎn),然后打開降落傘以75°的俯角降落到地面上的B點(diǎn).求他飛行的水平距離BC(結(jié)果精確到1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E在CB的延長線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE且與AE交于點(diǎn)G.
(1)求證:GF=BF.
(2)在BC邊上取點(diǎn)M,使得BM=BE,聯(lián)結(jié)AM交DE于點(diǎn)O.求證:FOED=ODEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com