【題目】如圖所示的是用棋子擺成的“”字形圖案.
(1)填寫下表:
圖案序號 | ① | ② | ③ | ④ | … | ⑩ |
每個圖案中棋子的個數(shù) | 5 | 8 | … |
(2)第個“”字形圖案中棋子的個數(shù)為______.(用含的代數(shù)式表示)
(3)第20個“”字形圖案共有棋子多少個?
(4)計算前20個“”字形圖案中棋子的總個數(shù)為______
【答案】(1)填表見解析(2)(3)62(4)670
【解析】
(1)通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個棋子,得出擺成第3、4、10個圖案需要的棋子數(shù);
(2)由(1)得出規(guī)律為擺成第n個圖案需要(3n+2)枚棋子;
(3) 把n=20代入計算即可;
(4) 把前20個“”字形圖案中棋子的個數(shù)相加即可.
解:(1)
圖案序號 | ① | ② | ③ | ④ | … | ⑩ |
每個圖案中棋子的個數(shù) | 5 | 8 | 11 | 14 | … | 32 |
(2)由(1)得出規(guī)律為擺成第n個圖案需要(3n+2)枚棋子;
(3)當(dāng)n=20時,3n+2=3×20+2=62;
(4)第1個圖案有5個棋子,第20個圖案有62個棋子,其和是:5+62=67;
第2個圖案有8個棋子,第19個圖案有59個棋子,其和是:8+59=67;
第3個圖案有11個棋子,第18個圖案有56個棋子,其和是:11+56=67;
以此類推,前20個圖案共有(5+62)×(20÷2)=67×10=670.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC
∴∠2=∠3=90°
∴BD∥EF ( )
∴∠4=_____ ( )
∵∠1=∠4
∴∠1=_____
∴DG∥BC ( )
∴∠ADG=∠C( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當(dāng)△DEB是直角三角形時,DF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.
(1)求證:四邊形ADCE是平行四邊形;
(2)在△ABC中,若AC=BC,則四邊形ADCE是 ;(只寫結(jié)論,不需證明)
(3)在(2)的條件下,當(dāng)AC⊥BC時,求證:四邊形ADCE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)求證:四邊形ACFD為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點為直線上的一點,為直角,平分.
(1)如圖1,若,則______°.
(2)如圖1,若,求的度數(shù).(用含的代數(shù)式表示)
(3)如圖2,若,平分,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對一棵傾斜的古杉樹AB進行保護,需測量其長度,如圖,在地面上選取一點C,測得∠ACB=45,AC=24 m,∠BAC=66.5,求這棵古杉樹AB的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,分別以BC,AB,AC為邊作等邊三角形BCE,ACF,ABD
(1)若存在四邊形ADEF,判斷它的形狀,并說明理由.
(2)存在四邊形ADEF的條件下,請你給△ABC添個條件,使得四邊形ADEF成為矩形,并說明理由.
(3)當(dāng)△ABC滿足什么條件時四邊形ADEF不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C在線段AD的異側(cè),點E、F分別是線段AB、CD上的點.已知∠AEG=∠AGE,∠DCG=∠DGC.
(1) 求證:AB∥CD
(2) 若∠AGE+∠AHF=180°,且∠BFC-30°=2∠C,求∠B的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com