【題目】一個(gè)長(zhǎng)方形的周長(zhǎng)是(6a+8b),其中一邊長(zhǎng)為(2a+3b),求另一邊長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題:①直徑是弦,②優(yōu)弧大于劣弧,③等弧的弧長(zhǎng)相等,④平分弦的直徑垂直于弦,⑤等弧所對(duì)的弦相等.其中正確的有( )個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=-2x經(jīng)過(guò)點(diǎn)P(-2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P'在反比例函數(shù)y = (k≠0)的圖像上。
(1)求a的值
(2)直接寫出點(diǎn)P'的坐標(biāo)
(3)求反比例函數(shù)的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售某一種新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價(jià)為4萬(wàn)元,每月銷售該種產(chǎn)品的總開(kāi)支(不含進(jìn)價(jià))總計(jì)11萬(wàn)元.在銷售過(guò)程中發(fā)現(xiàn),月銷售量(件)與銷售單價(jià)(萬(wàn)元)之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)求關(guān)于的函數(shù)關(guān)系式;(直接寫出結(jié)果)
(2)試寫出該公司銷售該種產(chǎn)品的月獲利(萬(wàn)元)關(guān)于銷售單價(jià)(萬(wàn)元)的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),月獲利最大?并求這個(gè)最大值;
(月獲利=月銷售額-月銷售產(chǎn)品總進(jìn)價(jià)-月總開(kāi)支.)
(3)若公司希望該產(chǎn)品一個(gè)月的銷售獲利不低于5萬(wàn)元,借助(2)中函數(shù)的圖象,請(qǐng)你幫助該公司確定銷售單價(jià)的范圍.在此情況下,要使產(chǎn)品銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,4),B(3,4),C(4,﹣1).
(1)試在平面直角坐標(biāo)系中,畫出△ABC;
(2)若△A1B1C1與△ABC關(guān)于x軸對(duì)稱,寫出A1、B1、C1的坐標(biāo);
(3)在x軸上找到一點(diǎn)P,使點(diǎn)P到點(diǎn)A、B兩點(diǎn)的距離和最;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E,F(xiàn)在BC上,EM垂直平分AB交AB于點(diǎn)M,F(xiàn)N垂直平分AC交AC于點(diǎn)N,∠EAF=90°,BC=12,EF=5.
(1)求∠BAC的度數(shù);
(2)求S△EAF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠a.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖l,若∠BCA=90°,∠a=90°,則BECF;EF|BE﹣AF|(填“>”,“<”或“=”);
②如圖(2),若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件 , 使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com