【題目】已知菱形OABC在平面直角坐標(biāo)系的位置如圖所示,頂點(diǎn)A(5,0),OB=4,點(diǎn)P是對(duì)角線OB上的一個(gè)動(dòng)點(diǎn),D(0,1),當(dāng)CP+DP最短時(shí),點(diǎn)P的坐標(biāo)為( )
A. (0,0)B. (1,)C. (,)D. (,)
【答案】D
【解析】
如圖連接AC,AD,分別交OB于G、P,作BK⊥OA于K.首先說(shuō)明點(diǎn)P就是所求的點(diǎn),再求出點(diǎn)B坐標(biāo),求出直線OB、DA,列方程組即可解決問(wèn)題.
如圖連接AC,AD,分別交OB于G、P,作BK⊥OA于K.
∵四邊形OABC是菱形,
∴AC⊥OB,GC=AG,OG=BG=2,A、C關(guān)于直線OB對(duì)稱(chēng),
∴PC+PD=PA+PD=DA,
∴此時(shí)PC+PD最短,
在RT△AOG中,AG= ,
,
,
,
∴點(diǎn)B坐標(biāo)(8,4),
∴直線OB解析式為y=x,直線AD解析式為y=-x+1,
,解得: ,
即點(diǎn)P的坐標(biāo)為(,).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行“行動(dòng)起來(lái),對(duì)抗霧霾”為主題的植樹(shù)活動(dòng),某街道積極響應(yīng),決定對(duì)該街道進(jìn)行綠化改造,共購(gòu)進(jìn)甲、乙兩種樹(shù)共50棵,已知甲樹(shù)每棵800元,乙樹(shù)每棵1200元.
(1)若購(gòu)買(mǎi)兩種樹(shù)的總金額為56000元,求甲、乙兩種樹(shù)各購(gòu)買(mǎi)了多少棵?
(2)若購(gòu)買(mǎi)甲樹(shù)的金額不少于購(gòu)買(mǎi)乙樹(shù)的金額,至少應(yīng)購(gòu)買(mǎi)甲樹(shù)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B =∠C,點(diǎn)D、E分別是邊AB、AC上的點(diǎn),PD平分∠BDE交BC于H,PE平分∠DEC交BC于G,DQ平分∠ADE交PE延長(zhǎng)線于Q。
(1)∠A+∠B+∠C+∠P +∠Q = °;
(2)猜想∠P與∠A的數(shù)量關(guān)系,并證明你的猜想;
(3)若∠EGH =112°,求∠ADQ 的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC的三個(gè)頂點(diǎn)分別為A(-3,2),B(-3,-2),C(3,-2).將△ABC平移,使點(diǎn)A與點(diǎn)M(2,3)重合,得到△MNP.
(1)將△ABC向 平移 個(gè)單位長(zhǎng)度,然后再向 平移 個(gè)單位長(zhǎng)度,可以得到△MNP.
(2)畫(huà)出△MNP.
(3)在(1)的平移過(guò)程中,線段AC掃過(guò)的面積為 (只需填入數(shù)值,不必寫(xiě)單位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥AD于點(diǎn)P,連接AC交NP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)AM= ,AP= .(用含t的代數(shù)式表示)
(2)當(dāng)四邊形ANCP為平行四邊形時(shí),求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時(shí)刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由
②使四邊形AQMK為正方形,則AC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題.
學(xué)校要購(gòu)買(mǎi)A,B兩種型號(hào)的足球,按體育器材門(mén)市足球銷(xiāo)售價(jià)格(單價(jià))計(jì)算:若買(mǎi)2個(gè)A型足球和3個(gè)B型足球,則要花費(fèi)370元,若買(mǎi)3個(gè)A型足球和1個(gè)B型足球,則要花費(fèi)240元.
(1)求A,B兩種型號(hào)足球的銷(xiāo)售價(jià)格各是多少元/個(gè)?
(2)學(xué)校擬向該體育器材門(mén)市購(gòu)買(mǎi)A,B兩種型號(hào)的足球共20個(gè),且費(fèi)用不低于1300元,不超過(guò)1500元,則有哪幾種購(gòu)球方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,陰影部分面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖中有△ABC,建立平面直角坐標(biāo)系后,點(diǎn)O的坐標(biāo)是(0,0).
(1)以O為位似中心,作△A′B′C′∽△ABC,△A′B′C′與△ABC相似比為2:1,且△A′B′C′在第二象限;
(2)在上面所畫(huà)的圖形中,若線段AC上有一點(diǎn)D,它的橫坐標(biāo)為k,點(diǎn)D在A′C′上的對(duì)應(yīng)點(diǎn)D′的橫坐標(biāo)為﹣2﹣k,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上的一個(gè)動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長(zhǎng)線交BC于Q.
(1)求證:OP=OQ ;
(2)若AD=8cm,AB=6cm,點(diǎn)P從點(diǎn)A出發(fā),以 的速度向點(diǎn)D 運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);
(3)當(dāng)t為何值時(shí),四邊形PBQD是菱形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com