【題目】如果拋物線y=ax2+bx+c過定點(diǎn)M(1,0),則稱此拋物線為定點(diǎn)拋物線.
(1)張老師在投影屏幕上出示了一個題目:請你寫出一條定點(diǎn)拋物線的解析式.小敏寫出了一個正確的答案:y=2x2+3x-5.請你寫出一個不同于小敏的答案;
(2)張老師又在投影屏幕上出示了一個思考題:已知定點(diǎn)拋物線y=-x2+2bx+c,求該拋物線的頂點(diǎn)最低時的解析式.
【答案】(1)y=x2+3x-4(答案不唯一);(2)y=-x2+2x-1
【解析】
試題⑴將M點(diǎn)代入解析式可得 ,則只要系數(shù)滿足的解析式均可.
⑵由解析式是定點(diǎn)拋物線可知 ,解得 ,而拋物線頂點(diǎn)縱坐標(biāo)為 ,將上式代入得 ,那么由拋物線頂點(diǎn)最低,可得 ,解得 ,從而 ,解析式為.
試題解析:(1) y=x2+3x-4(答案不唯一).
(2)∵y=-x2+2bx+c是定點(diǎn)拋物線,∴-1+2b+c=0,∴c=1-2b.∴該拋物線的頂點(diǎn)的縱坐標(biāo)為==c+b2=1-2b+b2=(b-1)2.當(dāng)拋物線y=-x2+2bx+c的頂點(diǎn)最低時,即(b-1)2的值最小,最小值是0,這時b=1,c=1-2b=-1,∴拋物線的頂點(diǎn)最低時的解析式是y=-x2+2x-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:“如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,BE.請根據(jù)上述條件,寫出一個正確結(jié)論.”其中四位同學(xué)寫出的結(jié)論如下:
小青:OE=OF;小何:四邊形DFBE是正方形;
小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=∠CAF.
這四位同學(xué)寫出的結(jié)論中不正確的是( )
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學(xué)的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(a,0),B (b,0),a、b滿足方程組,C為y軸正半軸上一點(diǎn),且.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)是否存在點(diǎn)D(t,-t)使?若存在,請求出D點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)已知E(-2,-4),若坐標(biāo)軸上存在一點(diǎn)P,使,請求出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國從2008年6月起執(zhí)行“限塑令”,“限塑令”執(zhí)行前,某校為了了解本校學(xué)生所在家庭使用塑料袋的情況,隨機(jī)調(diào)查了10名學(xué)生所在家庭月使用塑料袋的數(shù)量,結(jié)果如下(單位:只):
65,70,85,75,85,79,74,91,81,95
(1)計(jì)算這10名學(xué)生所在家庭平均月使用塑料袋多少只?
(2)“限塑令”執(zhí)行后,家庭平均月使用塑料袋數(shù)量預(yù)計(jì)減少,根據(jù)上面的計(jì)算后,你估計(jì)該校2000名學(xué)生所在的家庭平均月使用塑料袋一共可減少多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,直線AB,CD被直線EF所截,AD是∠CAB的角平分線,若∠3=∠1,∠2=50°,求∠4的度數(shù).
解:∵直線AB與直線EF相交,
∴∠2=∠CAB=50°.( )
∵AD是∠CAB的角平分線,
∴∠1=∠5=∠CAB=25°,( )
∵∠3=∠1,(已知)
∴∠3=25°,(等量代換)
∴∠3=∠5,(等量代換)
∴_______.( )
∵CD∥AB,( )
∴_______.(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)
數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計(jì)算的奧妙.
你知道怎樣迅速準(zhǔn)確的計(jì)算出結(jié)果嗎?請你按下面的步驟試一試:
第一步:∵,,,
∴.
∴能確定59319的立方根是個兩位數(shù).
第二步:∵59319的個位數(shù)是9,
∴能確定59319的立方根的個位數(shù)是9.
第三步:如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.
(解答問題)
根據(jù)上面材料,解答下面的問題
(1)求110592的立方根,寫出步驟.
(2)填空:__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com