【題目】如圖(1),△ABC和△EDC中,D為△ABC邊AC上一點(diǎn),CA平分∠BCE,BC=CD,AC=CE.
(1)求證:∠A=∠CED;
(2)如圖(2),若∠ACB=60°,連接BE交AC于F,G為邊CE上一點(diǎn),滿足CG=CF,連接DG交BE于H.
①求∠DHF的度數(shù);
②若EB平分∠DEC,試說明:BE平分∠ABC.
【答案】(1)見解析(2)①60°②見解析
【解析】
(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠CED;
(2)①由“SAS”可證△CDG≌△CBF,可得∠CBF=∠CDG,再利用三角形的內(nèi)角和定理,得∠CBF+∠BCF=∠CDG+∠DHF,又∠ACB=60°,即可出∠DHF=∠ACB=60°,從而問題得以解決;②由三角形的內(nèi)角和可得∠1+∠4=60°,因?yàn)椤?/span>1=∠2,只要證出∠1+∠3=60°,用三角形的外角以及等量代換可以證出,進(jìn)而得到BE平分∠ABC.
證明:(1)∵CA平分∠BCE
∴∠ACB=∠ACE,
∵AC=CE,BC=DC
∴△ABC≌△EDC(SAS)
∴∠A=∠CED
(2)①∵∠ACB=∠ACE=60°,CF=CG,BC=CD
∴△CDG≌△CBF(SAS)
∴∠CDG=∠CBF,
∵∠BFC=∠DFH
∴∠DHF=∠BCF=60°
②由(1)得△ABC≌△EDC
∴∠ABC=∠EDC
∵∠ACB=∠DCE=60°
∴∠2+∠4=60°
又∵∠DFH=∠A+∠3=∠2+∠FCG
∵∠A=∠DEC=2∠1=2∠2,
∴2∠1+∠3=∠2+60°
∴∠1+∠3=60°
∴∠3=∠4
即BE平分∠ABC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各頂點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點(diǎn)Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請(qǐng)直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過程中,設(shè)y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=50°,點(diǎn)D,E分別是邊AC,AB上的點(diǎn)(不與A,B,C重合),點(diǎn)P是平面內(nèi)一動(dòng)點(diǎn)(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在邊BC上運(yùn)動(dòng)(不與點(diǎn)B和點(diǎn)C重合),如圖(1)所示,則∠1+∠2=________
(用α的代數(shù)式表示).
(2)若點(diǎn)P在ABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫出你的結(jié)論,并說明理由.
(3)當(dāng)點(diǎn)P在邊CB的延長(zhǎng)線上運(yùn)動(dòng)時(shí),試畫出相應(yīng)圖形,標(biāo)注有關(guān)字母與數(shù)字,并寫出對(duì)應(yīng)的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,4),B(3,4),C(4,﹣1).
(1)試在平面直角坐標(biāo)系中,畫出△ABC;
(2)若△A1B1C1與△ABC關(guān)于x軸對(duì)稱,寫出A1、B1、C1的坐標(biāo);
(3)在x軸上找到一點(diǎn)P,使點(diǎn)P到點(diǎn)A、B兩點(diǎn)的距離和最。
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,將兩個(gè)完全相同的三角形紙片 ABC 和 DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如圖2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落 在 AB 邊上時(shí),
①填空:線段 DE 與 AC 的位置關(guān)系是 ;
②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2
(2)當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),小明猜想(1) 中 S1 與 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE 邊上的高,請(qǐng)你證明小明的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“※”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a※b=ab2+2ab+a.
如:1※2=1×22+2×1×2+1=9
(1)(﹣2)※3= ;
(2)若※3=16,求a的值;
(3)若2※x=m,(x)※3=n(其中x為有理數(shù)),試比較m,n的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有四個(gè)大小完全相同的小球,把它們分別標(biāo)號(hào)1,2,3,4,從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中隨機(jī)摸出一個(gè)球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.
【答案】 .
【解析】試題分析:
根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計(jì)算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計(jì)3種,
∴P(兩次摸到小球的數(shù)字之和等于4)=.
【題型】解答題
【結(jié)束】
23
【題目】小亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿AB的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測(cè)得其長(zhǎng)度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com