如圖,點E,F(xiàn)在正方形ABCD的邊BC,CD上,BE=CF.

(1)AE與BF相等嗎?為什么?

(2)AE與BF是否垂直?說說你的理由.

答案:
解析:

  (1)AE=BF,只要根據(jù)條件能說明△ABE≌△BCF即可

  (2)AE⊥BF,由△ABE≌△BCF可得∠EAB=∠FBC,而∠EAB+∠BEA=,得∠FBC+∠BEA=,所以∠BGE=,即AE⊥BF.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C、A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(精英家教網(wǎng)0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖將△ABC沿x軸的正方向平移4單位得到△A′B′O′,再繞O′點按順時針旋轉(zhuǎn)90°得到△A″B″O″,若A的坐標(biāo)為(-2,3),B點坐標(biāo)為(-3,0);
①在圖中畫△A′B′O′和△A″B″O″;
②直接寫出A′和A″點的坐標(biāo);
③△ABO的頂點A在變換過程中所經(jīng)過的路徑長為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•仁壽縣模擬)如圖將△ABO沿x軸的正方向平移4個單位得到△A′B′O′,再繞0′點按順時針旋轉(zhuǎn)90°得到△A″B″O″,若A的坐標(biāo)為(-2,4),B點坐標(biāo)為(-3,0);
①在圖中畫出△A′B′O′和△A″B″O″;
②直接寫出A′和A″點的坐標(biāo);
③△ABO的頂點A在變換過程中所經(jīng)過的路徑長為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案