【題目】把拋物線y=2(x+1)2向下平移______單位后,所得拋物線在x軸上截得的線段長為5.

【答案】12.5

【解析】

根據(jù)二次函數(shù)平移規(guī)律設(shè)出平移后解析式y=2(x+1)2b,再利用根與系數(shù)的關(guān)系得出b的值即可

∵把拋物線y=2(x+1)2向下平移,

∴設(shè)平移后解析式為:y=2(x+1)2b,

當(dāng)0=2(x+1)2b,

x2+2x+1=0,

x1+x2=-2,x1x2=1,

∵所得拋物線在x軸上截得的線段長為5,

|x1x2|=5,

(x1x2)2=(x1+x2)24x1x2=25,

44(1)=25,

解得:b=12.5,

∴把拋物線y=2(x+1)2向下平移12.5個單位長度后,所得拋物線在x軸上截得的線段長為5.

故答案為:12.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:把形如的二次三項式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫,即.例如:的一種形式的配方,的另一種形式的配方

請根據(jù)閱讀材料解決下列問題:

)比照上面的例子,寫出的兩種不同形式的配方;

)已知,求的值;

)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=80°,OE平分∠MON,點A、B、C分別是射線OMOEON上的動點(A、BC不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.

(1)如圖1,若ABON,則:①∠ABO的度數(shù)是      ;

②如圖2,當(dāng)∠BAD=ABD時,試求x的值(要說明理由);

(2)如圖3,若ABOM,則是否存在這樣的X的值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點AAEBD,交CD的延長線于點E,過點EEFBC,交BC延長線于點F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°,BC2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校位于小亮家北偏東35方向,距離為300m,學(xué)校位于大剛家南偏東85°方向,距離也為300m,則大剛家相對于小亮家的位置是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(3,2)。

(1)求這個二次函數(shù)的關(guān)系式;

(2)畫出它的圖象,并指出圖象的頂點坐標(biāo);

(3)當(dāng)x>0時,求使y≥2的x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y= ax2+bx+c經(jīng)過A(1,4)、B(-1,0)、C(-2,5)三點

(1)求拋物線的解析式并畫出這條拋物線;

(2)直角坐標(biāo)系中點的橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點稱為整點。試結(jié)合圖象,寫出在第四象限內(nèi)拋物線上的所有整點的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 ,給出下列結(jié)論:

是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);③當(dāng)a=1時,方程組的解也是方程x+y=4a的解;④x,y的都為自然數(shù)的解有4對.其中正確的個數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽制作一個不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為_____cm2.

查看答案和解析>>

同步練習(xí)冊答案