已知:如圖,△ABC中,D、E為AC邊的三等分點(diǎn),EF∥AB,交BD的延長(zhǎng)線于F.
求證:點(diǎn)D是BF的中點(diǎn).

證明:∵D、E為AC邊的三等分點(diǎn),
∴AD=DE.
∵EF∥AB,
∴∠BAD=∠FED.
在△BAD和△FED中
∠ADB=∠FDE,AD=DE,∠BAD=∠FED,
∴△BAD≌△FED(ASA).
∴BD=FD.
∴點(diǎn)D是BF的中點(diǎn).
分析:因?yàn)镈、E為AC邊的三等分點(diǎn),所以AD=DE=EC,又因?yàn)镋F∥AB,由內(nèi)錯(cuò)角相等可得∠BAD=∠FED,所以可根據(jù)ASA證明△BAD≌△FED,則有BD=FD,故點(diǎn)D是BF的中點(diǎn)可證.
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等,本題是一道較為簡(jiǎn)單的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請(qǐng)問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案