【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,
(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形.
【答案】
(1)解:連接OC,則∠CAO=∠ACO,
又∠FAC=∠CAO
∴∠FAC=∠ACO,
∴AF∥CO,
而CD⊥AF,
∴CO⊥CD,
即直線CD是⊙O的切線
(2)解:∵AB是⊙O的直徑,
∴∠ACB=90°
又∠FAC=∠CAO
∴AF=AB(三線合一),
∴∠F=∠B,
∵四邊形EABC是⊙O的內(nèi)接四邊形,
∵∠FEC+∠AEC=180°,∠B+∠AEC=180°
∴∠FEC=∠B
∴∠F=∠FEC,
即EC=FC
所以△FEC是等腰三角形.
【解析】(1)先判斷出∠FAC=∠ACO,進而得出AF∥CO,即可得出結論;(2)先用等腰三角形的三線合一得出AF=AB.再用同角的補角相等得出∠FEC=∠B 即可得出結論.
【考點精析】根據(jù)題目的已知條件,利用等腰三角形的判定和圓周角定理的相關知識可以得到問題的答案,需要掌握如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人之間相互傳球,球從一個人手中隨機傳到另外一個人手中,共傳球三次.
(1)若開始時球在甲手中,求經(jīng)過三次傳球后,球傳回到甲手中的概率是多少?
(2)若丙想使球經(jīng)過三次傳遞后,球落在自己手中的概率最大,丙會讓球開始時在誰手中?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小金魚在直角坐標系中的位置如圖所示,根據(jù)圖形解答下面的問題:
(1)分別寫出小金魚身上點A,B,C,D,E,F(xiàn)的坐標;
(2)小金魚身上的點的縱坐標都乘以-1,橫坐標不變,作出相應圖形,它與原圖案相比有哪些變化?
(3)小金魚身上的點的橫坐標都乘-1,所得圖形與原圖形相比有哪些變化?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點A3的坐標是________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠甲、乙兩車間接到加工一批零件的任務,從開始加工到完成這項任務共用了9天,乙車間在加工2天后停止加工,引入新設備后繼續(xù)加工,直到與甲車間同時完成這項任務為止,設甲、乙車間各自加工零件總數(shù)為y(件),與甲車間加工時間x(天),y與x之間的關系如圖(1)所示.由工廠統(tǒng)計數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(件)與甲車間加工時間x(天)的關系如圖(2)所示.
(1)甲車間每天加工零件為_____件,圖中d值為_____.
(2)求出乙車間在引入新設備后加工零件的數(shù)量y與x之間的函數(shù)關系式.
(3)甲車間加工多長時間時,兩車間加工零件總數(shù)為1000件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“中秋”節(jié)前,朵朵的媽媽去超市購買了大小、形狀、重量等都相同的五仁和豆沙月餅若干,放入不透明的盒中,此時從盒中隨機取出五仁月餅的概率為 ;爸爸從盒中取出五仁月餅3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機取出五仁月餅的概率為 .
(1)請你用所學知識計算:媽媽買的五仁月餅和豆沙月餅各有多少只?
(2)若朵朵一次從盒內(nèi)剩余月餅中任取2只,問恰有五仁月餅、豆沙月餅各1只的概率是多少?(用列表法或樹狀圖計算)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com