【題目】如圖,是由四條曲線圍成的廣告標(biāo)志,建立平面直角坐標(biāo)系,雙曲線對應(yīng)的函數(shù)表達(dá)式分別為y=-,y=.現(xiàn)用四根鋼條固定這四條曲線,這種鋼條加工成長方形產(chǎn)品按面積計(jì)算,每單位面積25元,請你幫助工人師傅計(jì)算一下,所需鋼條一共花多少錢?
【答案】600
【解析】試題分析:由題意可知四邊形ABCD是矩形,根據(jù)反比例函數(shù)圖象的對稱性可得,兩條坐標(biāo)軸將矩形ABCD分成四個(gè)全等的小矩形,由圖可知點(diǎn)A在y=上,由此可求得點(diǎn)矩形AEOH的面積,進(jìn)而求得矩形ABCD的面積,再根據(jù)每單位面積25元,結(jié)合矩形ABCD的面積,即可求得所需鋼條一共要花的錢數(shù).
試題解析:由反比例函數(shù)圖象的對稱性可知,兩條坐標(biāo)軸將長方形ABCD分成四個(gè)全等的小長方形.
因?yàn)辄c(diǎn)A為y=的圖象上的一點(diǎn),
所以S長方形AEOH=6.
所以S長方形ABCD=4×6=24.
所以總費(fèi)用為25×24=600(元).
答:所需鋼條一共花600元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=-x與函數(shù)y=-的圖象相交于A,B兩點(diǎn),過A,B兩點(diǎn)分別作y軸的垂線,垂足分別為點(diǎn)C,D,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內(nèi)的圖象,點(diǎn)P是y=的圖象上一動點(diǎn),PA⊥x軸于點(diǎn)A,交y=的圖象于點(diǎn)C,PB⊥y軸于點(diǎn)B,交y=的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求四邊形ODPC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)棱長為的正方體的每個(gè)面等分成個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去個(gè)小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:
(1)探究:
①數(shù)軸上表示5和2的兩點(diǎn)之間的距離是多少.
②數(shù)軸上表示﹣2和﹣6的兩點(diǎn)之間的距離是多少.
③數(shù)軸上表示﹣4和3的兩點(diǎn)之間的距離是多少.
(2)歸納:
一般的,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m﹣n|.
(3)應(yīng)用:
①如果表示數(shù)a和3的兩點(diǎn)之間的距離是7,則可記為:|a﹣3|=7,求a的值.
②若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣4與3之間,求|a+4|+|a﹣3|的值.
③當(dāng)a取何值時(shí),|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?請說明理由.
(4)拓展:某一直線沿街有2014戶居民(相鄰兩戶居民間隔相同):A1,A2,A3,A4,A5,…A2014,某餐飲公司想為這2014戶居民提供早餐,決定在路旁建立一個(gè)快餐店P(guān),點(diǎn)P選在什么線段上,才能使這2014戶居民到點(diǎn)P的距離總和最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B,∠C的平分線交于點(diǎn)O,D是外角與內(nèi)角平分線交點(diǎn),E是外角平分線交點(diǎn),若∠BOC=120°,則∠D=( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com