【題目】如圖(1),BDAB,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們運(yùn)動(dòng)的時(shí)間為.

(1)若點(diǎn)的速度與點(diǎn)的速度相等,當(dāng)時(shí),求證:;

(2)(1)的條件下,判斷此時(shí)的位置關(guān)系,并證明;

(3)將圖(1)中的,,改為,得到圖(2),其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,請問是否存在實(shí)數(shù),使得全等?若存在,求出相應(yīng)的的值;若不存在,請說明理由.

【答案】(1)證明見解析;(2);證明見解析;(3)當(dāng),時(shí),全等.

【解析】

(1)當(dāng)t=1時(shí)求得,再利用SAS即可證明;

(2)根據(jù),推出,即可證明

(3)兩種情況判斷即可.

解:(1)全等,

理由如下:當(dāng)時(shí),

,

,

又∵,

中,

;

(2),

證明:∵

,

.

;

(3),

①若

,

解得:,則;

②若

,

,解得,,

,解得,,

故當(dāng),,時(shí),全等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,過頂點(diǎn)作射線.

1)當(dāng)射線外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,,.

①試證明是直角三角形;

②求線段的長.(用含的代數(shù)式表示)

2)當(dāng)射線內(nèi)部時(shí),如圖②,過點(diǎn)于點(diǎn),連結(jié),請寫出線段、、的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)騎自行車去郊游,右圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象,小強(qiáng)9點(diǎn)離開家,15點(diǎn)回家,根據(jù)這個(gè)圖象,請你回答下列問題:

1)小強(qiáng)到離家最遠(yuǎn)的地方需要幾小時(shí)?此時(shí)離家多遠(yuǎn)?

2)何時(shí)開始第一次休息?休息時(shí)間多長?

3)小強(qiáng)何時(shí)距家21km?(寫出計(jì)算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx(k0)沿著y軸向上平移3個(gè)單位長度后,與x軸交于點(diǎn)B(3,0),與y軸交于點(diǎn)C,拋物線y=x2+bx+c過點(diǎn)B、C且與x軸的另一個(gè)交點(diǎn)為A.

(1)求直線BC及該拋物線的表達(dá)式;

(2)設(shè)該拋物線的頂點(diǎn)為D,求△DBC的面積;

(3)如果點(diǎn)Fy軸上,且∠CDF=45°,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:

(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠C,A=70°,B=75°,則∠C=   °,D=   °

(2)在探究等對角四邊形性質(zhì)時(shí):

小紅畫了一個(gè)如圖2所示的等對角四邊形ABCD,其中,∠ABC=ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請你證明該結(jié)論;

(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以ABBC為邊各畫一個(gè)等對角四邊形ABCD.

要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫的兩個(gè)四邊形不全等.

(4)已知:在等對角四邊形ABCD中,∠DAB=60°,ABC=90°,AB=5,AD=4,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)BDM為直角三角形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年220日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽. 某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級經(jīng)典誦讀比賽活動(dòng),比賽成績評定為AB,C,D,E五個(gè)等級,該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列問題:

(1)該校七(1)班共有   名學(xué)生;扇形統(tǒng)計(jì)圖中C等級所對應(yīng)扇形的圓心角等于  度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車票價(jià)格;建議(Ⅱ)不改變車票價(jià)格,減少支出費(fèi)用. 下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )

A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)

C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)

查看答案和解析>>

同步練習(xí)冊答案