【題目】如圖,拋物線經過,兩點,與y軸交于點C,連接AB,AC,BC.
求拋物線的表達式;
求證:AB平分;
拋物線的對稱軸上是否存在點M,使得是以AB為直角邊的直角三角形,若存在,求出點M的坐標;若不存在,請說明理由.
【答案】拋物線的解析式為;證明見解析;點M的坐標為或.
【解析】
將,代入拋物線的解析式得到關于a、b的方程組,從而可求得a、b的值;
先求得AC的長,然后取,則,連接BD,接下來,證明,然后依據SSS可證明≌,接下來,依據全等三角形的性質可得到;
作拋物線的對稱軸交x軸與點E,交BC與點F,作點A作,作,分別交拋物線的對稱軸與、M,依據點A和點B的坐標可得到,從而可得到或,從而可得到FM和的長,故此可得到點和點M的坐標.
將,代入得:,
解得:,,
拋物線的解析式為;
,,
,
取,則,
由兩點間的距離公式可知,
,,
,
,
在和中,,,,
≌,
,
平分;
如圖所示:拋物線的對稱軸交x軸與點E,交BC與點F.
拋物線的對稱軸為,則.
,,
,
,
,
,
,
同理:,
又,
,
,
點M的坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】2017年9月,我國中小學生迎來了新版“教育部統(tǒng)編義務教育語文教科書”,本次“統(tǒng)編本”教材最引人關注的變化之一是強調對傳統(tǒng)文化經典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經典著作”調查,隨機調查了若干名學生(每名學生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調查了 名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點E為BC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( 。
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)的圖象與直線y=2x+1交于點A(1,m).
(1)求k、m的值;
(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數(shù)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.
①當n=3時,求線段AB上的整點個數(shù);
②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(包括邊界)恰有5個整點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=4,扇形BEF的半徑為4,圓心角為60°,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑做⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:FE⊥AB;
(2)填空:當EF=4,時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MAN=60°,若△ABC的頂點B在射線AM上,且AB=2,點C在射線AN上運動,當△ABC是銳角三角形時,BC的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com