精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是

【答案】
【解析】解:連接AF,如圖所示:
∵四邊形ABCD是矩形,
∴∠B=∠C=90°,CD=AB=2,BC=AD=3,
∵FC=2BF,
∴BF=1,FC=2,
∴AB=FC,
∵E是CD的中點,
∴CE= CD=1,
∴BF=CE,
在△ABF和△FCE中, ,
∴△ABF≌△FCE(SAS),
∴∠BAF=∠CFE,AF=FE,
∵∠BAF+∠AFB=90°,
∴∠CFE+∠AFB=90°,
∴∠AFE=180°﹣90°=90°,
∴△AEF是等腰直角三角形,
∴∠AEF=45°,
∴ocs∠AEF=
所以答案是:
【考點精析】掌握矩形的性質和解直角三角形是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,B=D=90°,A=60°AB=4,CD=2.求:四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BD=CDABD=ACD=90°,點EF分別在AB、AC上,若ED平分∠BEF

1)求證:FD平分∠EFC

2)若EF=4AF=6,AE=5,求BECF的和的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中,,詹姆斯在探究箏形的性質時,得到如下結論:
;;四邊形ABCD的面積其中正確的結論有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,甲、乙兩船同時由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半小時后再轉向北偏東30°方向開往B島,其速度仍為20海里/小時.

(1)求港口A到海島B的距離;

(2)B島建有一座燈塔,在燈塔方圓5海里內都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,現有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當點M第一次到達B點時,M、N同時停止運動.
MN運動幾秒后,MN兩點重合?
M、N運動幾秒后,可得到等邊三角形?
當點MNBC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】”切實減輕學生課業(yè)負擔”是我市作業(yè)改革的一項重要舉措.某中學為了解本校學生平均每天的課外作業(yè)時間,隨機抽取部分學生進行問卷調查,并將調查結果分為A、B、C、D四個等級,A:1小時以內;B:1小時﹣﹣1.5小時;C:1.5小時﹣﹣2小時;D:2小時以上.根據調查結果繪制了如圖所示的兩種不完整的統計圖,
請根據圖中信息解答下列問題:
(1)該校共調查了學生;
(2)請將條形統計圖補充完整;
(3)表示等級A的扇形圓心角α的度數是;
(4)在此次調查問卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時以上,從這4人中人選2人去參加座談,用列表表或畫樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m),且與y軸、直線x=2分別交于點D、E.

(1)求m的值及該拋物線對應的函數關系式;
(2)判斷直線BE與拋物線交點的個數;
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個動點,是否存在這樣的點P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案