(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.

(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫出此時(shí)線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);

(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC=,求此時(shí)線段CF的長(zhǎng)(直接寫出結(jié)果).

(1)相等和垂直;(2)成立,理由見(jiàn)試題解析;(3)

【解析】

試題分析:(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據(jù)∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.

(2)延長(zhǎng)DF交BC于點(diǎn)G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據(jù)AD=DE,AB=BC,得到BD=BG又因?yàn)椤螦BC=90°,所以DF=CF且DF⊥BF.

(3)延長(zhǎng)DF交BA于點(diǎn)H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據(jù)旋轉(zhuǎn)條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,進(jìn)而可以根據(jù)勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.

試題解析:(1)∵∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),∴DF=BE,CF=BE,∴DF=CF.

∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°,

∵BF=DF,∴∠DBF=∠BDF,

∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF=CF,且DF⊥CF.

(2)(1)中的結(jié)論仍然成立.

證明:如圖,此時(shí)點(diǎn)D落在AC上,延長(zhǎng)DF交BC于點(diǎn)G.

∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F為BE中點(diǎn),∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.

∵AD=DE,∴AD=GB,

∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.

∵∠ACB=90°,∴△DCG是等腰直角三角形,

∵DF=GF,∴DF=CF,DF⊥CF.

(3)延長(zhǎng)DF交BA于點(diǎn)H,

∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°,

∵由旋轉(zhuǎn)可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.

∵F是BE的中點(diǎn),∴EF=BF,∴△DEF≌△HBF,∴ED=HB,

∵AC=,在Rt△ABC中,由勾股定理,得:AB=4,

∵AD=1,∴ED=BH=1,∴AH=3,在Rt△HAD中由勾股定理,得:DH=,

∴DF=,∴CF=,∴線段CF的長(zhǎng)為

考點(diǎn):1.等腰直角三角形;2.全等三角形的判定與性質(zhì);3.幾何綜合題.

考點(diǎn)分析: 考點(diǎn)1:圖形的平移與旋轉(zhuǎn) 定義:
將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。平移是圖形變換的一種基本形式。平移不改變圖形的形狀和大小,平移可以不是水平的。 平移基本性質(zhì):
經(jīng)過(guò)平移,對(duì)應(yīng)線段平行(或共線)且相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)所連接的線段平行且相等;
平移變換不改變圖形的形狀、大小和方向(平移前后的兩個(gè)圖形是全等形)。
(1)圖形平移前后的形狀和大小沒(méi)有變化,只是位置發(fā)生變化;
(2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等
(3)多次連續(xù)平移相當(dāng)于一次平移。
(4)偶數(shù)次對(duì)稱后的圖形等于平移后的圖形。
(5)平移是由方向和距離決定的。
這種將圖形上的所有點(diǎn)都按照某個(gè)方向作相同距離的位置移動(dòng),叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱為平移
平移的條件:確定一個(gè)平移運(yùn)動(dòng)的條件是平移的方向和距離。 平移的三個(gè)要點(diǎn)
1 原來(lái)的圖形的形狀和大小和平移后的圖形是全等的。
2 平移的方向。(東南西北,上下左右,東偏南n度,東偏北n度,西偏南n度,西偏北n度)
3 平移的距離。(長(zhǎng)度,如7厘米,8毫米等) 平移作用:
1.通過(guò)簡(jiǎn)單的平移可以構(gòu)造精美的圖形。也就是花邊,通常用于裝飾,過(guò)程就是復(fù)制-平移-粘貼。
2.平移長(zhǎng)于平行線有關(guān),平移可以將一個(gè)角,一條線段,一個(gè)圖形平移到另一個(gè)位置,是分散的條件集中到一個(gè)圖形上,使問(wèn)題得到解決。 平移作圖的步驟:
(1)找出能表示圖形的關(guān)鍵點(diǎn);
(2)確定平移的方向和距離;
(3)按平移的方向和距離確定關(guān)鍵點(diǎn)平移后的對(duì)應(yīng)點(diǎn);
(4)按原圖的順序,連結(jié)各對(duì)應(yīng)點(diǎn)。 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級(jí):
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省武夷山市九年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

(10分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰(shuí)去,規(guī)定如下:將正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回,重新洗勻后背面朝上放置在桌面上,再隨機(jī)抽出一張記下數(shù)字,如果兩個(gè)數(shù)字的和為奇數(shù),則小明去;如果兩個(gè)數(shù)字的和為偶數(shù),則小亮去.

(1)請(qǐng)用列表或畫樹形圖(樹狀圖)的方法表示抽出的兩張卡片上的數(shù)字和的所用可能出現(xiàn)的結(jié)果;

(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年浙江省臺(tái)州市九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

若點(diǎn)(2,5),(4,5)在拋物線y=ax2+bx+c上,則它的對(duì)稱軸是( ).

A.x= B.x=1 C.x=2 D.x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年云南省九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知平行四邊形ABCD中,∠A -∠B = 30°,則∠C = ________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年云南省九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

不能判定四邊形ABCD是平行四邊形的條件是( )

A、∠A=∠C ∠B=∠D

B、AB∥CD AD=BC

C、AB∥CD ∠A=∠C

D、AB∥CD AB=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年天津市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(8分)已知:如圖,AB是⊙O的直徑,CD是⊙O的弦, 且AB⊥CD,垂足為E,聯(lián)結(jié)OC, OC=5,CD=8,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年天津市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年四川省九年級(jí)上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(6分)已知x1,x2是一元二次方程的兩個(gè)實(shí)數(shù)根.

(1)求實(shí)數(shù)m的取值范圍;

(2)如果x1,x2滿足不等式,且m為整數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省鎮(zhèn)江市丹徒區(qū)九年級(jí)10月調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

若兩個(gè)不等實(shí)數(shù)滿足條件:,,則的值是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案