【題目】已知,直線ABCD,EAB、CD間的一點(diǎn),連接EA、EC.


(1)如圖①,若∠A=20°,C=40°,則∠AEC=   °.

(2)如圖②,若∠A=x°,C=y°,則∠AEC=   °.

(3)如圖③,若∠A=α,C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡(jiǎn)要說(shuō)明.

【答案】(1)60;(2) 360°﹣x°﹣y°(3)詳見(jiàn)解析

【解析】首先都需要過(guò)點(diǎn)EEFAB,由ABCD,可得ABCDEF.

(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠AEC的度數(shù);

(2)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠AEC的度數(shù);

(3)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠AEC的度數(shù).

如圖,過(guò)點(diǎn)EEFAB,

ABCD,

ABCDEF.

(1)∵∠A=20°,C=40°,

∴∠1=A=20°,2=C=40°,

∴∠AEC=1+2=60°;

(2)∴∠1+A=180°,2+C=180°,

∵∠A=x°,C=y°,

∴∠1+2+x°+y°=360°,

∴∠AEC=360°﹣x°﹣y°;

(3)A=α,C=β,

∴∠1+A=180°,2=C=β,

∴∠1=180°﹣A=180°﹣α,

∴∠AEC=1+2=180°﹣α+β.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,現(xiàn)有一個(gè)均勻的轉(zhuǎn)盤(pán)被平均分成六等份,分別標(biāo)有這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字(當(dāng)指針恰好指在分界線上時(shí),不記,重轉(zhuǎn)).

1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)出的數(shù)字大于的概率是多少;

2)現(xiàn)有兩張分別寫(xiě)有的卡片,要隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長(zhǎng)度.

①這三條線段能構(gòu)成三角形的概率是多少?

②這三條線段能構(gòu)成等腰三角形的概率是多少?(注:要求寫(xiě)出各種可能情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)M、N分別表示數(shù)m,n 則點(diǎn)M,N 之間的距離為|m-n|.已知點(diǎn)AB,CD在數(shù)軸上分別表示的數(shù)為a,b,cd.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長(zhǎng)度為(

A.3.5B.0.5C.3.50.5D.4.50.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)“學(xué)生在學(xué)校拿手機(jī)影響學(xué)習(xí)的情況”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了部分學(xué)生,對(duì)此問(wèn)題的看法分為三種情況:沒(méi)有影響、影響不大、影響很大,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:

人數(shù)統(tǒng)計(jì)表如下:

看法

沒(méi)有影響

影響不大

影響很大

學(xué)生人數(shù)()

20

30

a

1)統(tǒng)計(jì)表中的a    ;

2)請(qǐng)根據(jù)表中的數(shù)據(jù),談?wù)勀愕目捶ǎú簧儆?/span>2條)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點(diǎn),過(guò)D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.

(1)求證:BC是⊙O的切線;
(2)連接AF,BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)?jiān)趫D中標(biāo)明旋轉(zhuǎn)中心P的位置并寫(xiě)出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,是角平分線,

1)求的度數(shù).

2)過(guò)點(diǎn)邊上的高, 垂足為;求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一等腰直角三角形紙片,以它的對(duì)稱軸為折痕,將三角形對(duì)折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長(zhǎng)是原等腰直角三角形周長(zhǎng)的倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,P是BC邊中點(diǎn),AP交BD于點(diǎn)Q.則 的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案