【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,P是BC邊中點(diǎn),AP交BD于點(diǎn)Q.則 的值為 .
【答案】
【解析】解:連接OP,
∵四邊形ABCD是平行四邊形,
∴AO=OC,BO=OD,
∵PC=PB,
∴OP∥AB,OP= AB,
∴ = = ,
∴ = .
所以答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥CD,E為AB、CD間的一點(diǎn),連接EA、EC.
(1)如圖①,若∠A=20°,∠C=40°,則∠AEC= °.
(2)如圖②,若∠A=x°,∠C=y°,則∠AEC= °.
(3)如圖③,若∠A=α,∠C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡要說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有15張大小、形狀及背面完全相同的卡片,卡片正面分別畫有正三角形、正方形、圓,從這15張卡片中任意抽取一張正面的圖形既是軸對稱圖形,又是中心對稱圖形的概率是 ,則正面畫有正三角形的卡片張數(shù)為( )
A.3
B.5
C.10
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知E,F分別是AB、CD上的動(dòng)點(diǎn),P也為一動(dòng)點(diǎn).
(1)如圖1,若AB∥CD,求證:∠P=∠BEP+∠PFD;
(2)如圖2,若∠P=∠PFD-∠BEP,求證:AB∥CD;
(3)如圖3,AB∥CD,移動(dòng)E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點(diǎn),點(diǎn)P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng),問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點(diǎn)P在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng),試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B不重合).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com