【題目】某品牌飲水機(jī)廠生產(chǎn)一種飲水機(jī)和飲水機(jī)桶,飲水機(jī)每臺(tái)定價(jià)350元,飲水機(jī)桶每只定價(jià)50元,廠方開展促銷活動(dòng)期間,可以同時(shí)向客戶提供兩種優(yōu)惠方案:
方案一:買一臺(tái)飲水機(jī)送一只飲水機(jī)桶;
方案二:飲水機(jī)和飲水機(jī)桶都按定價(jià)的90%付款.
現(xiàn)某客戶到該飲水機(jī)廠購買飲水機(jī)30臺(tái),飲水機(jī)桶只(超過30).
(1)若該客戶按方案一購買,求客戶需付款(用含的式子表示);若該客戶按方案二購買,求客戶需付款(用含的式子表示);
(2)若時(shí),通過計(jì)算說明此時(shí)按哪種方案購買較為合算?
(3)當(dāng)時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計(jì)算出所需的錢數(shù).
【答案】(1)客戶按方案一購買需付款(50x+9000)元,客戶按方案二購買需付款(45x+9450)元;(2)當(dāng)x=40時(shí),按方案一購買合算;(3)先按方案一購買30臺(tái)飲水機(jī),送30只飲水機(jī)桶需10500元,差10只飲水機(jī)桶按方案二購買需450元,共需10950元.
【解析】
(1)按照對(duì)應(yīng)的方案的計(jì)算方法分別列出代數(shù)式即可;
(2)把x=40代入求得的代數(shù)式求得數(shù)值,進(jìn)一步比較得出答案即可;
(3)根據(jù)兩種方案的優(yōu)惠方式,可得出先按方案一購買30臺(tái)飲水機(jī),送30只飲水機(jī)桶,另外10只飲水機(jī)桶再按方案二購買即可.
(1)客戶按方案一購買需付款30×350+(x﹣30)×50=50x+30(350﹣50)=(50x+9000)元;
客戶按方案二購買需付款350×90%×30+50×90%×x=(45x+9450)元;
(2)當(dāng)x=40時(shí),方案一需50×40+9000=11000(元);
方案二需45×40+9450=11250(元);
所以按方案一購買合算;
(3)先按方案一購買30臺(tái)飲水機(jī),送30只飲水機(jī)桶需10500元,差10只飲水機(jī)桶按方案二購買需450元,共需10950元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,將一個(gè)直角三角形紙片()的一個(gè)頂點(diǎn)放在點(diǎn)處,現(xiàn)將三角形紙片繞點(diǎn)任意轉(zhuǎn)動(dòng),平分斜邊與的夾角,平分.
(1)將三角形紙片繞點(diǎn)轉(zhuǎn)動(dòng)(三角形紙片始終保持在的內(nèi)部),若,則_______;
(2)將三角形紙片繞點(diǎn)轉(zhuǎn)動(dòng)(三角形紙片始終保持在的內(nèi)部),若射線恰好平方,若,求的度數(shù);
(3)將三角形紙片繞點(diǎn)從與重合位置逆時(shí)針轉(zhuǎn)到與重合的位置,猜想在轉(zhuǎn)動(dòng)過程中和的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果A、B、C三點(diǎn)在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點(diǎn),那么M,N兩點(diǎn)之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)花壇的形狀如圖所示,它的兩端是半徑相等的半圓,求:
(1)花壇的周長l;
(2)花壇的面積S;
(3)若a=8m,r=5m,求此時(shí)花壇的周長及面積(π取3.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知直線l:yx+3交y軸于點(diǎn)A,x軸于點(diǎn)B,∠BAO的角平分線AC交x軸于點(diǎn)C,過點(diǎn)C作直線AB的垂線,交y軸于點(diǎn)D.
(1)求直線CD的解析式;
(2)如圖2,若點(diǎn)M為直線CD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸,交直線AB與點(diǎn)N,當(dāng)四邊形AMND為菱形時(shí),求△ACM的面積;
(3)如圖3,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn)連接PA、PD,將△ADP沿DP翻折得到△A1DP,當(dāng)以點(diǎn)A、A1、B為頂點(diǎn)的三角形是等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊相等的凸四邊形叫做“準(zhǔn)菱形”.利用該定義完成以下各題:
(1) 理解
填空:如圖1,在四邊形ABCD中,若 (填一種情況),則四邊形ABCD是“準(zhǔn)菱形”;
(2)應(yīng)用
證明:對(duì)角線相等且互相平分的“準(zhǔn)菱形”是正方形;(請(qǐng)畫出圖形,寫出已知,求證并證明)
(3) 拓展
如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準(zhǔn)菱形”,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式的常數(shù)項(xiàng)式,次數(shù)是,若兩數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為A、B
(1)線段AB的長=
(2)數(shù)軸上在B點(diǎn)右邊有一點(diǎn)C,點(diǎn)C到A、B兩點(diǎn)的距離和為11,求點(diǎn)C在數(shù)軸上所對(duì)應(yīng)的數(shù);
(3) 若P、Q兩點(diǎn)分別從A、B出發(fā),同時(shí)沿?cái)?shù)軸正方向運(yùn)動(dòng),P點(diǎn)的速度是Q點(diǎn)速度的2倍,且3秒后,2OP=OQ,求點(diǎn)Q運(yùn)動(dòng)的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李和小陸從 A 地出發(fā),騎自行車沿同一條路行駛到 B 地,他們離出發(fā)地的距離 s和行駛時(shí)間t之間的關(guān)系的圖象如圖,根據(jù)圖象回答下列問題:
(1) 小李在途中逗留的時(shí)間為___________h,小陸從 A 地到 B 地的速度是________km/h;
(2) 當(dāng)小李和小陸相遇時(shí),他們離 B 地的路程是____________千米;
(3) 寫出小李在逗留之前離 A 地的路程s和行駛時(shí)間t之間的函數(shù)關(guān)系式為_____________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com