如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG,BD,DG,下列結(jié)論:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若=,則3S△BDG=13S△DGF.
其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
①③④. 解:∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,
故①正確;
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵點G為EF的中點,
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,
,
∴△DCG≌△BEG(SAS).
∴∠BGE=∠DGC,
∵∠BGE<∠AEB,
∴∠DGC=∠BGE<45°,
∵∠CGF=90°,
∴∠DGF<135°,
故②錯誤;
∵∠BGE=∠DGC,
∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,
故③正確;
∵△DCG≌△BEG,
∵∠BGE=∠DGC,BG=DG,
∵∠EGC=90°,
∴∠BGD=90°,
∵BD==,
∴BG=DG=,
∴S△BDG=×=
∴3S△BDG=,
過G作GM⊥CF于M,
∵CE=CF=BC﹣BE=BC﹣AB=1,
∴GM=CF=,
∴S△DGF=•DF•GM==,
∴13S△DGF=,
∴3S△BDG=13S△DGF,
故④正確.
科目:初中數(shù)學 來源: 題型:
在“百度”搜索引擎中輸入“姚明”,能搜索到與之相關的網(wǎng)頁約27000000個,將這個數(shù)用科學記數(shù)法表示為( 。
A. 2.7×105 B. 2.7×106 C. 2.7×107 D. 2.7×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在直角坐標系中,直線y=x+1與y軸交于點A,按如圖方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直線y=x+1上,點C1、C2、C3…在x軸上,圖中陰影部分三角形的面積從左導游依次記為S1、S2、S3、…Sn,則Sn的值為 (用含n的代數(shù)式表示,n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列說法中正確的是( )
A. 擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B. “對角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C. “同位角相等”這一事件是不可能事件
D. “鈍角三角形三條高所在直線的交點在三角形外部”這一事件是隨機事件
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,動點P從點B出發(fā)以1厘米/秒的速度沿BC方向運動,動點Q從點C出發(fā)以2厘米/秒的速度沿CD方向運動,P,Q兩點同時出發(fā),當點Q到達點D時停止運動,點P也隨之停止,設運動時間為t秒(t>0).
(1)求線段CD的長;
(2)t為何值時,線段PQ將四邊形ABCD的面積分為1:2兩部分?
(3)伴隨P,Q兩點的運動,線段PQ的垂直平分線為l.
①t為何值時,l經(jīng)過點C?
②求當l經(jīng)過點D時t的值,并求出此時刻線段PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,拋物線交軸于點A(1,0),交軸于點B,對稱軸是=2.
(1)求拋物線的解析式.
(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使△PAB的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com