如圖,在平面直角坐標系中,以坐標原點O為圓心,2為半徑畫⊙O,P是⊙O上一動點,且P在第一象限內(nèi),過點P作⊙O的切線與x軸相交于點A,與y軸相交于點B.
(1)點P在運動時,線段AB的長度也在發(fā)生變化,請寫出線段AB長度的最小值,并說明理由;
(2)在⊙O上是否存在一點Q,使得以Q,O,A,P為頂點的四邊形是平行四邊形?若存在,請求出Q點的坐標;若不存在,請說明理由.

【答案】分析:(1)如圖,設(shè)AB的中點為C,連接OP,由于AB是圓的切線,故△OPC是直角三角形,所以當OC與OP重合時,OC最短;
(2)分兩種情況:如圖(1),當四邊形APOQ是正方形時,△OPA,△OAQ都是等腰直角三角形,可求得點Q的坐標為(,-),如圖(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得點Q的坐標為(-,).
解答:解:(1)線段AB長度的最小值為4,
理由如下:
連接OP,
∵AB切⊙O于P,
∴OP⊥AB,
取AB的中點C,
則AB=2OC;
當OC=OP時,OC最短,
即AB最短,
此時AB=4;

(2)設(shè)存在符合條件的點Q,
如圖①,設(shè)四邊形APOQ為平行四邊形;
∵∠APO=90°,
∴四邊形APOQ為矩形,
又∵OP=OQ,
∴四邊形APOQ為正方形,
∴OQ=QA,∠QOA=45°;
在Rt△OQA中,根據(jù)OQ=2,∠AOQ=45°,
得Q點坐標為(,-);
如圖②,設(shè)四邊形APQO為平行四邊形;
∵OQ∥PA,∠APO=90°,
∴∠POQ=90°,
又∵OP=OQ,
∴∠PQO=45°,
∵PQ∥OA,
∴PQ⊥y軸;
設(shè)PQ⊥y軸于點H,
在Rt△OHQ中,根據(jù)OQ=2,∠HQO=45°,
得Q點坐標為(-,).
∴符合條件的點Q的坐標為(,-)或(-,).
點評:本題利用了切線的性質(zhì),平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案