【題目】若關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為 .
【答案】0或﹣1
【解析】解:令y=0,則kx2+2x﹣1=0.
∵關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個(gè)公共點(diǎn),
∴關(guān)于x的方程kx2+2x﹣1=0只有一個(gè)根.
①當(dāng)k=0時(shí),2x﹣1=0,即x= ,∴原方程只有一個(gè)根,∴k=0符合題意;
②當(dāng)k≠0時(shí),△=4+4k=0,
解得,k=﹣1.
綜上所述,k=0或﹣1.
所以答案是:0或﹣1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,種植草莓不超過20畝時(shí),所得利潤(rùn)y(元)與種植面積m(畝)滿足關(guān)系式y(tǒng)=1500m;超過20畝時(shí),y=1380m+2400.而當(dāng)種植櫻桃的面積不超過15畝時(shí),每畝可獲得利潤(rùn)1800元;超過15畝時(shí),每畝獲得利潤(rùn)z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種).
x(畝) | 20 | 25 | 30 | 35 |
z(元) | 1700 | 1600 | 1500 | 1400 |
(1)設(shè)小王家種植x畝櫻桃所獲得的利潤(rùn)為P元,直接寫出P關(guān)于x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)如果小王家計(jì)劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿足0<x<20時(shí),求小王家總共獲得的利潤(rùn)w(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蘋果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋果,每名工人只能做其中一項(xiàng)工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4000元;加工成罐頭出售每噸獲利10000元.采摘的工人每人可以采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進(jìn)行蘋果采摘,全部售出后,總利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式.
(2)如何分配工人才能獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧州市特產(chǎn)批發(fā)市場(chǎng)有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購(gòu)買A、B兩種品牌的龜苓膏共1000包.
(1)若小王按需購(gòu)買A、B兩種品牌龜苓膏粉共用22000元,則各購(gòu)買多少包?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)在2中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號(hào),已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.
(1)尺規(guī)作圖:過點(diǎn)P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);
(2)求船P到海岸線MN的距離(即PE的長(zhǎng));
(3)若船A、船B分別以20海里/時(shí)、15海里/時(shí)的速度同時(shí)出發(fā),勻速直線前往救援,試通過計(jì)算判斷哪艘船先到達(dá)船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時(shí)間為x小時(shí),y1、y2關(guān)于x的函數(shù)圖象如圖所示:
(1)根據(jù)圖象,直接寫出y1、y2關(guān)于x的函數(shù)圖象關(guān)系式;
(2)若兩車之間的距離為S千米,請(qǐng)寫出S關(guān)于x的函數(shù)關(guān)系式;
(3)甲、乙兩地間有A,B兩個(gè)加油站,相距200千米,若客車進(jìn)入A加油站時(shí),出租車恰好進(jìn)入B加油站,求A加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,F(xiàn)為BC邊上的中點(diǎn),連接AF交對(duì)角線BD于G,在BD上截BE=BA,連接AE,將△ADE沿AD翻折得△ADE′,連接E′C交BD于H,若BG=2,則四邊形AGHE′的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線y=2x+4分別交x軸,y軸于點(diǎn)A,C,點(diǎn)D(m,2)在直線AC上,點(diǎn)B在x軸正半軸上,且OB=3OC,點(diǎn)E是y軸上任意一點(diǎn),記點(diǎn)E為(0,n).
(1)求點(diǎn)D的坐標(biāo)及直線BC的解析式;
(2)連結(jié)DE,將線段DE繞點(diǎn)D按順時(shí)針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點(diǎn)F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)E′,當(dāng)n為何值時(shí),AE′分別與AC,BC,AB垂直?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0 , y0)到直線Ax+By+C=0的距離公式為:d= .
例如:求點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離為d= = .
根據(jù)以上材料,解決下列問題:
(1)點(diǎn)P1(3,4)到直線y=﹣ x+ 的距離為;
(2)已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實(shí)數(shù)b的值;
(3)如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出S△ABP的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com