【題目】如圖,在矩形中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線(xiàn)以每秒個(gè)單位的速度向點(diǎn)方向運(yùn)動(dòng),連接,把沿翻折,得到.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)若,當(dāng)三點(diǎn)在同一直線(xiàn)上時(shí),求的值;
(2)若點(diǎn)到直線(xiàn)的距離等于,求的值;
(3)若的最小值為,直接寫(xiě)出的值.
【答案】(1)t=3 -;(2)t= ;(3)m= .
【解析】
(1)如圖1中,設(shè)PD=t.則PA=3-t.首先證明BP=BC=6,在Rt△ABP中利用勾股定理即可解決問(wèn)題;
(2)通過(guò)添加輔助線(xiàn),構(gòu)造直角三角形再解決問(wèn)題;
(3)當(dāng)點(diǎn)A,點(diǎn)E,點(diǎn)C在同一條直線(xiàn)上時(shí),AE最短,利用勾股定理求值即可.
解:(1)如圖1中,設(shè)PD=t.則PA=3-t
∵P、B、E共線(xiàn),
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=3,
在Rt△ABP中,
∵AB2+AP2=BP2,
∴22+(3-t)2=32,
∴t=3 +(舍去)或3-
∴當(dāng)t=3 -時(shí),三點(diǎn)在同一直線(xiàn)上.
(2) 過(guò)點(diǎn)E作MN⊥BC,交AD于點(diǎn)M
∵四邊形ABCD是矩形,MN⊥BC
∴MN⊥AD
∵點(diǎn)到直線(xiàn)的距離等于
∴EN=1
∵MN=AB=2, EC=CD=2,
∴EN=MN-EN=2-1=1
∴在Rt△ENC中,NC=
∴MD= NC=
∵由題意得:MP=MD-PD=-t,ME=MN-EN=2-1=1,EP=PD=t
∴在Rt△MPE中,
即:,解得:t=
(3)如圖,當(dāng)點(diǎn)A,點(diǎn)E,點(diǎn)C在同一條直線(xiàn)上時(shí),AE最短.
由題意得:=,EC=CD=AB=2
∴在Rt△ABC中,
∴m=AD=BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列推理結(jié)論及推理說(shuō)明:
如圖,已知∠+∠=180°,∠=∠.求證:∠=∠.
證明:∵∠+∠=180°(已知)
∴∥( )
∴∠= ( )
又∵∠=∠(已知)
= (等量代換)
∴∥( )
∴∠=∠( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著教育信息化的發(fā)展,學(xué)生的學(xué)習(xí)方式日益增多. 教師為了指導(dǎo)學(xué)生有幸效利用網(wǎng)絡(luò)進(jìn)行學(xué)習(xí),對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖1、圖2兩幅統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)本次接受問(wèn)卷調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校學(xué)生課外利用網(wǎng)絡(luò)學(xué)習(xí)的時(shí)間在“A”選項(xiàng)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“六一”前夕,某玩具經(jīng)銷(xiāo)商用去2350元購(gòu)進(jìn)A、B、C三種新型的電動(dòng)玩具共50套,并且購(gòu)進(jìn)的三種玩具都不少于10套,設(shè)購(gòu)進(jìn)A種玩具x套,B種玩具y套,三種電動(dòng)玩具的進(jìn)價(jià)和售價(jià)如表所示
型 號(hào) | A | B | C |
進(jìn)價(jià)(元/套) | 40 | 55 | 50 |
售價(jià)(元/套) | 50 | 80 | 65 |
(1)用含x、y的代數(shù)式表示購(gòu)進(jìn)C種玩具的套數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)假設(shè)所購(gòu)進(jìn)的這三種玩具能全部賣(mài)出,且在購(gòu)銷(xiāo)這種玩具的過(guò)程中需要另外支出各種費(fèi)用200元.
①求出利潤(rùn)P(元)與x(套)之間的函數(shù)關(guān)系式;②求出利潤(rùn)的最大值,并寫(xiě)出此時(shí)三種玩具各多少套.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,ABC的頂點(diǎn)都在格點(diǎn)上,在平面直角坐標(biāo)系。
⑴寫(xiě)出點(diǎn)的坐標(biāo):點(diǎn)A ,點(diǎn)B ,點(diǎn)C .
⑵將ABC向右平移7個(gè)單位,再向下平移3個(gè)單位,得到A1B1C1,試在圖上畫(huà)出A1B1C1的圖形;
⑶求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說(shuō),表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)點(diǎn)之間的距離.這個(gè)結(jié)論可以推廣為:表示在數(shù)軸上數(shù)與對(duì)應(yīng)點(diǎn)之間的距離.
例 已知,求的值.
解:在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
例 已知,求的值.
解:在數(shù)軸上與的距離為點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
仿照閱讀材料的解法,解決下列問(wèn)題:
(1)已知,求的值;
(2)已知,求的值;
(3)若數(shù)軸上表示的點(diǎn)在與之間,則的值為_(kāi)________;
(4)當(dāng)滿(mǎn)足_________時(shí),則的值最小,最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式,兩項(xiàng)成績(jī)的原始分均為100分,前6名選手的得分如下:
根據(jù)規(guī)定,筆試成績(jī)和面試成績(jī)按一定的百分比折合成綜合成績(jī)(綜合成績(jī)的滿(mǎn)分仍為100分)
(1)這6名選手筆試成績(jī)的平均數(shù)是_____分,中位數(shù)是_____分,眾數(shù)是______分.
(2)現(xiàn)已知1號(hào)選手的綜合成績(jī)?yōu)?/span>88分,求筆試成績(jī)和面試成績(jī)的百分比各為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng).如:若從圖起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;若第二次擲得,就從開(kāi)始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率.
()淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2)、B(2,0),C(4,2).
(1)在平面直角坐標(biāo)系中畫(huà)出△ABC;
(2)若將(1)中的△ABC平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′坐標(biāo)為(6,2),畫(huà)出平移后的△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com