【題目】如圖,AB∥CD.
(1)用直尺和圓規(guī)按要求作圖:作∠ACD的平分線CP,CP交AB于點P;作AF⊥CP,垂足為F.
(2)判斷直線AF與線段CP的關系,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C(0,﹣),OA=1,OB=4,直線l過點A,交y軸于點D,交拋物線于點E,且滿足tan∠OAD=.
(1)求拋物線的解析式;
(2)動點P從點B出發(fā),沿x軸正方形以每秒2個單位長度的速度向點A運動,動點Q從點A出發(fā),沿射線AE以每秒1個單位長度的速度向點E運動,當點P運動到點A時,點Q也停止運動,設運動時間為t秒.
①在P、Q的運動過程中,是否存在某一時刻t,使得△ADC與△PQA相似,若存在,求出t的值;若不存在,請說明理由.
②在P、Q的運動過程中,是否存在某一時刻t,使得△APQ與△CAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒4°的速度旋轉,同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉,直線MN保持不動,如圖2,設旋轉時間為t(0≤t≤60,單位:秒).
(1)當t=3時,求∠AOB的度數(shù);
(2)在運動過程中,當∠AOB第二次達到72°時,求t的值;
(3)在旋轉過程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請求出t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,
(1)求點C到直線AB的距離;
(2)求海警船到達事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在的內部,點、分別在射線、上,且,,,分別交、于點、.
(1)如圖①所示,若,,延長至點,使得,請證明EF=CE+DF;
(2)如圖②所示,若∠AOB=α,.求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=13,AC=5,BC=12,點O為∠ABC與∠CAB平分線的交點,則點O到邊AB的距離為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CD⊥AB于點D,BE⊥ AC于點E, CD、 BE交于點O,且AO平分∠BAC,則圖中的全等三角形共有_________________對。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com