如圖,O是邊長為的正方形ABCD的中心,將一塊半徑足夠長,圓心為直角的扇形紙板的圓心放在O點處,并將紙板的圓心繞O旋轉(zhuǎn),求正方形ABCD的邊被紙板覆蓋部分的面積為(    )

A.    B.    C.    D.

 

C

解析:本題考查的正方形的中心對稱性。連接OD,OC利用ASA證明三角形全等。故可得覆蓋部分的面積為正方形的面積的。故選擇C。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,O是邊長為1的正△ABC的中心,將△ABC繞點O逆時針方向旋轉(zhuǎn)180°,得△A1B1C1,則△A1B1C1與△ABC重疊部分(圖中陰影部分)的面積為(  )
A、
3
4
B、
3
6
C、
2
3
D、
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為4+2
3
的等邊三角形,其中O是坐標原點,頂點B在y軸的正半軸上.將△精英家教網(wǎng)OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PE∥x軸,
(1)求點P、E的坐標;
(2)如果拋物線y=-
1
2
x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,D是邊長為4的正△ABC的邊BC上一點,ED∥AC交AB于E,DF⊥AC交AC于F,設DF=x.
(1)求△EDF的面積y與x的函數(shù)關系式和自變量x的取值范圍.
(2)當x為何值時,△EDF的面積最大,最大面積是多少?
(3)若△DCF與由E、F、D三點組成的三角形相似,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。
A、-
2
3
B、-
2
3
C、-2
D、-
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OBC是邊長為4的等邊三角形,點C在x軸正半軸上,AB⊥y軸于點A,OH⊥BC于點H.動點P從點H出發(fā),沿線段HO向點O運動,動點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度.設動點P和Q運動的時間為t秒.
(1)求OH的長;
(2)設△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關系式,并求t為何值時,△OPQ的面積最大,最大值是多少?
(3)當△OPQ與△OCH相似時,求t的值.

查看答案和解析>>

同步練習冊答案