【題目】已知:如圖,BE∥CF,且BE=CF,若BE、CF分別平分∠ABC和∠BCD.
(1)請(qǐng)判斷AB與CD是否平行?并說(shuō)明你的理由.
(2)CE、BF相等嗎?為什么?
【答案】(1)AB∥CD.理由見(jiàn)解析;(2)CE、BF相等.理由見(jiàn)解析.
【解析】
根據(jù)角平分線(xiàn)的定義,得出∠ABC=2∠1,∠BCD=2∠2,而由BE∥CF得出∠1=∠2,再根據(jù)等量代換得出∠ABC=∠BCD,即可證明AB∥CD;
求出∠1=∠2,根據(jù)平行線(xiàn)的判定推出即可.
(1)AB∥CD.理由:
∵BE、CF分別平分∠ABC和∠BCD,
∴∠ABC=2∠1,∠BCD=2∠2,
∵BE∥CF,
∴∠1=∠2,
∴∠ABC=∠BCD,
∴AB∥CD;
(2)CE、BF相等.理由:
∵BE=CF,∠1=∠2,BC=CB,
∴△BCE≌△CBF(SAS),
∴CE=BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB經(jīng)過(guò)圓心O,交⊙O于A、C兩點(diǎn),點(diǎn)D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線(xiàn);
(2)若點(diǎn)N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在“數(shù)學(xué)小論文”評(píng)比活動(dòng)中,共征集到論文100篇,對(duì)論文評(píng)比的分?jǐn)?shù)(分?jǐn)?shù)為整數(shù))整理后,分組畫(huà)出頻數(shù)分布直方圖(如圖),已知從左到右5個(gè)小長(zhǎng)方形的高的比為l:3:7:6:3,那么在這次評(píng)比中被評(píng)為優(yōu)秀的論文(分?jǐn)?shù)大于或等于80分為優(yōu)秀)有____篇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)16÷(﹣)﹣3﹣(﹣)×(﹣4)
(2)2(a2b+ab2)﹣2(a2b﹣1)﹣ab2+2
(3)(a﹣b﹣2)(a﹣b+2)
(4)899×901+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,給出下列的條件,能判斷它是平行四邊形的是( )
A. AB//CD, AD=BCB. ∠B=∠C,∠A=∠D
C. AB=AD, BC=CDD. AB=CD, AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的3倍,則稱(chēng)這樣的方程為“立根方程”.以下關(guān)于立根方程的說(shuō)法:
①方程x2﹣4x﹣12=0是立根方程;
②若點(diǎn)(p,q)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程px2+4x+q=0是立根方程;
③若一元二次方程ax2+bx+c=0是立根方程,且相異兩點(diǎn)M(1+t,s),N(4﹣t,s)都在拋物線(xiàn)y=ax2+bx+c上,則方程ax2+bx+c=0的其中一個(gè)根是.
正確的是( 。
A. ①② B. ② C. ③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣2010)0+﹣2sin60°﹣3tan30°+;
(2)解方程:x2﹣6x+2=0;
(3)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0.
①若﹣1是方程的一個(gè)根,求m的值和方程的另一根;
②證明:對(duì)于任意實(shí)數(shù)m,函數(shù)y=x2﹣mx﹣2的圖象與x軸總有兩個(gè)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l為正比例函數(shù)y=x的圖象,點(diǎn)A1的坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)D1,以A1D1為邊作正方形A1B1C1D1;過(guò)點(diǎn)C1作直線(xiàn)l的垂線(xiàn),垂足為A2,交x軸于點(diǎn)B2,以A2B2為邊作正方形A2B2C2D2;過(guò)點(diǎn)C2作x軸的垂線(xiàn),垂足為A3,交直線(xiàn)l于點(diǎn)D3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形AnBnCnDn的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于點(diǎn)A(-2,0),頂點(diǎn)坐標(biāo)為(2,n),與y軸的交點(diǎn)在(0,3),(0,4)之間(包含端點(diǎn)),則下列結(jié)論:①當(dāng)x>6時(shí),y<0;②5a+b>0;③≤a≤-,④4≤n<5中,正確有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com