(2007•昆明)如圖,AB和CD是同一地面上的兩座相距36米的樓房,在樓AB的樓頂A點測得樓CD的樓頂C的仰角為45°,樓底D的俯角為30度.求樓CD的高(結果保留根號).

【答案】分析:在題中兩個直角三角形中,知道已知角和其鄰邊,只需根據正切值求出對邊后相加即可.
解答:解:延長過點A的水平線交CD于點E
則有AE⊥CD,四邊形ABDE是矩形,AE=BD=36
∵∠CAE=45°∴△AEC是等腰直角三角形∴CE=AE=36
在Rt△AED中,tan∠EAD=
∴ED=36×tan30°=
∴CD=CE+ED=36+12
答:樓CD的高是(36+12)米.
點評:本題要求學生借助俯角構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年廣東省潮州市饒平縣鳳洲中學九年級(下)第二次月考數(shù)學試卷(解析版) 題型:解答題

(2007•昆明)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2007•昆明)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•昆明)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省深圳市中考數(shù)學試卷(模擬)(解析版) 題型:解答題

(2007•昆明)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2007年云南省昆明市中考數(shù)學試卷(解析版) 題型:解答題

(2007•昆明)如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉120°,得到線段OB.
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結果均保留根號).

查看答案和解析>>

同步練習冊答案