如圖,在△ABC中,∠A=450,∠B=300,CD⊥AB,垂足為D,CD=1,則AB的長為【   】
A.2  B.  C.  D.
D。
∵CD⊥AB,∴△ACD和△BCD都是直角三角形。
∵∠A=450,CD=1,∴AD=CD=1。
∵∠B=300,∴。
∴AB=AD+BD=。故選D。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則銳角A的度數(shù)是 (   )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在直角坐標(biāo)系中,P是第一象限內(nèi)的點(diǎn),其坐標(biāo)是(3,m),且OP與x軸正半軸的夾角的正切值是,則的值是【   】
A. B.  C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一只貓頭鷹蹲在一棵樹AC的B(點(diǎn)B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點(diǎn)觀測(cè)F點(diǎn)的俯角為53°,老鼠躲藏處M(點(diǎn)M在DE上)距D點(diǎn)3米.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,甲乙兩幢樓之間的距離是30米,自甲樓頂A處測(cè)得乙樓頂端C處的仰角為,測(cè)得乙樓底部D處的俯角為,則乙樓的高度為       米.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一根長米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當(dāng)木棒A端沿墻下滑至點(diǎn)A′時(shí),B端沿地面向右滑行至點(diǎn)B′.

(1)求OB的長;
(2)當(dāng)AA′=1米時(shí),求BB′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我國為了維護(hù)隊(duì)釣魚島P的主權(quán),決定對(duì)釣魚島進(jìn)行常態(tài)化的立體巡航.在一次巡航中,輪船和飛機(jī)的航向相同(AP∥BD),當(dāng)輪船航行到距釣魚島20km的A處時(shí),飛機(jī)在B處測(cè)得輪船的俯角是45°;當(dāng)輪船航行到C處時(shí),飛機(jī)在輪船正上方的E處,此時(shí)EC=5km.輪船到達(dá)釣魚島P時(shí),測(cè)得D處的飛機(jī)的仰角為30°.試求飛機(jī)的飛行距離BD(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

比較大。       (填“>”,“=”,“<”).

查看答案和解析>>

同步練習(xí)冊(cè)答案