如圖,平面直角坐標(biāo)系中,直線(xiàn)AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線(xiàn)段AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線(xiàn)AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)因?yàn)橹本(xiàn)AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),所以可設(shè)y=kx+b,將A、B的坐標(biāo)代入,利用方程組即可求出答案;
(2)因?yàn)辄c(diǎn)C為線(xiàn)段AB上的一動(dòng)點(diǎn),CD⊥x軸于點(diǎn)D,所以可設(shè)點(diǎn)C坐標(biāo)為(x,x+),那么OD=x,CD=x+,利用梯形的面積公式可列出關(guān)于x的方程,解之即可,但要注意x的取值;
(3)因?yàn)椤螦OB=90°,所以以P,O,B為頂點(diǎn)的三角形與△OBA相似需分情況探討:
當(dāng)∠OBP=90°時(shí),如圖
①若△BOP∽△OBA,則∠BOP=∠BAO=30°,BP=OB=3,P1(3,).
②若△BPO∽△OBA,則∠BPO=∠BAO=30°,OP=OB=1,P2(1,).
③過(guò)點(diǎn)P作OP⊥BC于點(diǎn)P,此時(shí)△PBO∽△OBA,∠BOP=∠BAO=30°,OP=BP,過(guò)點(diǎn)P作PM⊥OA于點(diǎn)M,∠OPM=30°,OM=OP,PM=OM,從而求得P的坐標(biāo).
④若△POB∽△OBA,則∠OBP=∠BAO=30°,∠POM=30°,所以PM=OM,P4,);當(dāng)∠POB=90°時(shí),點(diǎn)P在x軸上,不符合要求.
解答:解:(1)設(shè)直線(xiàn)AB解析式為:y=kx+b,
把A,B的坐標(biāo)代入得k=-,b=
所以直線(xiàn)AB的解析為:y=x+

(2)方法一:設(shè)點(diǎn)C坐標(biāo)為(x,x+),那么OD=x,CD=x+
∴S梯形OBCD==x.
由題意:x=
解得x1=2,x2=4(舍去),
∴C(2,)(1分)
方法二:∵,S梯形OBCD=,∴
由OA=OB,得∠BAO=30°,AD=CD.
∴S△ACD=CD×AD==.可得CD=
∴AD=1,OD=2.∴C(2,).

(3)當(dāng)∠OBP=90°時(shí),如圖

①若△BOP∽△BAO,
則∠BOP=∠BAO=30°,BP=OB=3,
∴P1(3,).(2分)
②若△BPO∽△BAO,
則∠BPO=∠BAO=30°,OP=OB=1.
∴P2(1,).(1分)
當(dāng)∠OPB=90°時(shí)
③過(guò)點(diǎn)P作OP⊥BA于點(diǎn)P(如圖),
此時(shí)△PBO∽△OBA,∠BOP=∠BAO=30°
過(guò)點(diǎn)P作PM⊥OA于點(diǎn)M.
方法一:在Rt△PBO中,BP=OB=,
OP=BP=
∵在Rt△PMO中,∠OPM=30°,
∴OM=OP=;PM=OM=.∴P3,).
方法二:設(shè)P(x,x+),得OM=x,
PM=x+,
由∠BOP=∠BAO,得∠POM=∠ABO.
∵tan∠POM==,tan∠ABO==
x+=x,解得x=.此時(shí)P3,).
④若△POB∽△OBA(如圖),
則∠OBP=∠BAO=30°,∠POM=30度.
∴PM=OM=
∴P4,)(由對(duì)稱(chēng)性也可得到點(diǎn)P4的坐標(biāo)).
當(dāng)∠POB=90°時(shí),點(diǎn)P在x軸上,不符合要求.
綜合得,符合條件的點(diǎn)有四個(gè),分別是:P1(3,),P2(1,),P3,),P4,).
點(diǎn)評(píng):本題綜合考查了用待定系數(shù)法求一次函數(shù)的解析式和相似三角形的有關(guān)知識(shí),解決這類(lèi)問(wèn)題常用到分類(lèi)討論、數(shù)形結(jié)合、方程和轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線(xiàn)y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿(mǎn)足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線(xiàn)段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖,過(guò)點(diǎn)D作CD的垂線(xiàn),過(guò)點(diǎn)B作BC的垂線(xiàn),兩垂線(xiàn)交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線(xiàn)段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案