【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),AF與DE相交于點(diǎn)G,BF與CE相交于點(diǎn)H.
(1)求證:四邊形EHFG是平行四邊形;
(2)①若四邊形EHFG是菱形,則平行四邊形ABCD必須滿足條件 ;
②若四邊形EHFG是矩形,則平行四邊形ABCD必須滿足條件 .
【答案】(1)證明見(jiàn)解析;(2)①平行四邊形ABCD是矩形;②當(dāng)平行四邊形ABCD是矩形,并且AB=2AD.
【解析】
(1)通過(guò)證明兩組對(duì)邊分別平行,可得四邊形EHFG是平行四邊形;
(2)①當(dāng)平行四邊形ABCD是矩形時(shí),通過(guò)證明有一組鄰邊相等,可得平行四邊形EHFG是菱形;
②當(dāng)平行四邊形ABCD是矩形,并且AB=2AD時(shí),先證明四邊形ADFE是正方形,得出有一個(gè)內(nèi)角等于90°,從而證明菱形EHFG為一個(gè)矩形
(1)證明:∵四邊形ABCD是平行四邊形,
∴AE∥CF,AB=CD,
∵E是AB中點(diǎn),F是CD中點(diǎn),
∴AE=CF,
∴四邊形AECF是平行四邊形,
∴AF∥CE.
同理可得DE∥BF,
∴四邊形FGEH是平行四邊形;
(2)①當(dāng)平行四邊形ABCD是矩形時(shí),平行四邊形EHFG是菱形.
∵四邊形ABCD是矩形
∴∠ABC=∠DCB=90°,
∵E是AB中點(diǎn),F是CD中點(diǎn),
∴BE=CF,
在△EBC與△FCB中,
∵ ,
∴△EBC≌△FCB,
∴CE=BF,
∠ECB=∠FBC,
BH=CH,
EH=FH,
平行四邊形EHFG是菱形;
②解:當(dāng)平行四邊形ABCD是矩形,并且AB=2AD時(shí),平行四邊形EHFG是矩形.理由如下:
連接EF,如圖所示:
∵E,F(xiàn)分別為AB,CD的中點(diǎn),且AB=CD,
∴AE=DF,且AE∥DF,
∴四邊形AEFD為平行四邊形,
∴AD=EF,
又∵AB=2AD,E為AB中點(diǎn),則AB=2AE,
于是有AE=AD=AB,
這時(shí),EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,
∴四邊形ADFE是正方形,
∴EG=FG=AF,AF⊥DE,∠EGF=90°,
∴此時(shí),平行四邊形EHFG是矩形;
故答案為:當(dāng)平行四邊形ABCD是矩形,平行四邊形ABCD是矩形,并且AB=2AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時(shí),1≤y≤1,則稱這個(gè)函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過(guò)點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖末-10,在平面直角坐標(biāo)系中,直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)C和點(diǎn)B關(guān)于y軸對(duì)稱.
(1)求△ABC內(nèi)切圓的半徑;
(2)過(guò)O、A兩點(diǎn)作⊙M,分別交直線AB、AC于點(diǎn)D、E,求證:AD+AE是定值,并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水渠的橫截面呈拋物線,水面的寬度為AB(單位:米),現(xiàn)以AB所在直線為x軸,以拋物線的對(duì)稱軸為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)坐標(biāo)原點(diǎn)為O.已知AB=8米,設(shè)拋物線解析式為y=ax2﹣4.
(1)求a的值;
(2)點(diǎn)C(﹣1,m)是拋物線上一點(diǎn),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)D,連接CD,BC,BD,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅爸爸上星期五買(mǎi)進(jìn)某公司股票1000股,每股28元,下表為本周內(nèi)每日該股票的漲跌情況。(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 | +4 | +4.5 | -1 | -2.5 | -6 |
(1)通過(guò)上表你認(rèn)為星期三收盤(pán)時(shí),每股是多少?
(2)本周內(nèi)每股最高是多少?最低是多少元?
(3)已知小紅爸爸買(mǎi)進(jìn)股票時(shí)付了的手續(xù)費(fèi),賣(mài)出時(shí)還需付成交額,的手續(xù)費(fèi)和的交易稅,如果小紅爸爸在星期五收盤(pán)時(shí)將全部股票賣(mài)出,你對(duì)他的收益情況怎樣評(píng)價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(7,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:,點(diǎn)、、在射線上,點(diǎn)、、...在射線上,、、...均為等邊三角形,若,則的邊長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天早晨,小王從家出發(fā)步行前往學(xué)校,途中在路邊一飯店吃早餐,如圖所示是小王從家到學(xué)校這一過(guò)程中所走的路程 s(米)與時(shí)間 t(分)之間的關(guān)系.
(1)小王從家到學(xué)校的路程共_________米,從家出發(fā)到學(xué)校,小王共用了________分鐘;
(2)小王吃早餐用了____________分鐘;
(3)小王吃早餐以前和吃完早餐后的平均速度分別是多少米/分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com