如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為30°,測(cè)得岸邊點(diǎn)D的俯角為45°,又知河寬CD為50米.現(xiàn)需從山頂A到河對(duì)岸點(diǎn)C拉一條筆直的纜繩AC,求纜繩AC的長(答案可帶根號(hào)).

【答案】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形,應(yīng)利用其公共邊構(gòu)造等量關(guān)系,進(jìn)而可求出答案.
解答:解:作AB⊥CD交CD的延長線于點(diǎn)B,
在Rt△ABC中,
∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,
∴AC=2AB,DB=AB.
設(shè)AB=x,則BD=x,AC=2x,CB=50+x,
∵tan∠ACB=tan30°,
∴AB=CB•tan∠ACB=CB•tan30°.
∴x=(50+x)•
解得:x=25(1+),
∴AC=50(1+)(米).
答:纜繩AC的長為50(1+)米.
點(diǎn)評(píng):本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為30°,測(cè)得岸邊點(diǎn)D的俯角為45°,又知河寬CD為50米.現(xiàn)需從山頂A到河對(duì)岸點(diǎn)C拉一條筆直的纜繩AC,求纜繩AC的長(答案可帶根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為45°,測(cè)得岸邊點(diǎn)D的俯角為29°,又知河寬CD為60米.現(xiàn)需從河對(duì)岸點(diǎn)C拉一條筆直的纜繩AC,求纜繩AC的長.(精確到0.1).
參考數(shù)據(jù):sin29°≈0.48,cos29°≈0.87,tan 29°≈0.55,tan61°≈l.80,
2
≈1.41.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為30°,測(cè)得岸邊點(diǎn)D的俯角為45°,現(xiàn)從山頂A到河對(duì)岸點(diǎn)C拉一條筆直的纜繩AC,如果AC=120米,求河寬CD的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為30°,測(cè)得岸邊點(diǎn)D的俯角為45度.C、D、B在同一水平線上,又知河寬CD為50米,則山高AB是(  )
A、50米
B、25米
C、25(
3
+1)米
D、75米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•沙河口區(qū)模擬)如圖,河旁有一座小山,從山頂A處測(cè)得河對(duì)岸點(diǎn)C的俯角為30°,測(cè)得岸邊點(diǎn)D的俯角為45°,又知河寬CD為50米.現(xiàn)需從山頂A到河對(duì)岸點(diǎn)C拉一條筆直的纜繩AC.
(1)求纜繩AC的長.(精確到0.1米)
(2)若在纜繩上有一輛纜車正以1000米每小時(shí)的速度從A出發(fā)求經(jīng)過多少分鐘后能夠到達(dá)C(精確到0.1小時(shí))(參考數(shù)據(jù):
2
≈1.41,
3
≈1.73,
5
≈2.24,
6
≈2.45)

查看答案和解析>>

同步練習(xí)冊(cè)答案