【題目】如圖,已知邊長為6的等邊△ABC內(nèi)接于⊙O.
(1)求⊙O半徑;
(2)求 的長和弓形BC的面積.
【答案】
(1)解:連結OB,OC,作OM⊥BC于M,
∵△ABC是等邊三角形,
∴∠A=60°,
∴∠BOC=120°.
又∵OM⊥BC,
∴BM=CM=3.
又∵OB=OC,
∴∠OBC=∠OCB=30°.
∴⊙O半徑= =2 ;
(2)解:∵由(1)知∠BOC=120°,OB=2 ,
∴弧BC的長= =
弓形BC的面積=S扇形BOC﹣S△BOC= ﹣ ×6×3=4π﹣3 .
【解析】(1)連結OB,OC,作OM⊥BC于M,根據(jù)圓周角定理求出∠BOC的度數(shù),再由銳角三角函數(shù)的定義即可得出結論;(2)直接根據(jù)弧長公式可得出弧BC的長,再由弓形BC的面積=S扇形BOC﹣S△BOC可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2是兩張形狀大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB、EF的端點均在小正方形的頂點上.
(1)如圖1,作出以AB為對角線的正方形并直接寫出正方形的周長;
(2)如圖2,以線段EF為一邊作出等腰△EFG(點G在小正方形頂點處)且頂角為鈍角,并使其面積等于4.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)問題發(fā)現(xiàn):
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關系為
(2)拓展探究:
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE、CE、AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;
(3)問題解決:
當正方形CDEF旋轉(zhuǎn)到B、E、F三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.
(1)求證:BD是⊙O的切線;
(2)若BC=2 ,E是半圓 上一動點,連接AE、AD、DE. 填空:
①當 的長度是時,四邊形ABDE是菱形;
②當 的長度是時,△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂線,交BC于P點,則P即為所求
(乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求
對于兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤
D.甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的BC邊上的中線,沿AD將△ACD折疊,C的對應點為C′,已知∠ADC=45°,BC=6,那么點B與C′的距離為( )
A.3
B.3
C.3
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)40°得到△A1B1C1 , AB與A1C1相交于點D,A1C1、BC1與AC分別交于點E、F.
(1)求證:△BCF≌△BA1D;
(2)當∠C=40°時,請你證明四邊形A1BCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com